Система команд, вычисления в Maxima. Программирование в Maxima Как пользоваться программой maximal pro

Математический пакет Maxima - одна из лучших бесплатных замен маткаду.

Данное учебное пособие (в формате pdf) может быть использовано в рамках дисциплин математический анализ, дифференциальные уравнения, пакеты прикладных программ и др. на разных специальностях в учреждениях высшего профессионального образования, если государственным образовательным стандартом предусмотрено изучение раздела «Дифференциальные уравнения», а также в рамках курсов по выбору. Оно также может быть полезным для знакомства с системами компьютерной математики в профильных классах общеобразовательных учреждений с углубленным изучением математики и информатики.

  • Предисловие
  • Глава 1. Основы работы в системе компьютерной математики Maxima
    • 1.1. О системе Maxima
    • 1.2. Установка Maxima на персональный компьютер
    • 1.3. Интерфейс основного окна Maxima
    • 1.4. Работа с ячейками в Maxima
    • 1.5. Работа со справочной системой Maxima
    • 1.6. Функции и команды системы Maxima
    • 1.7. Управление процессом вычислений в Maxima
    • 1.8. Простейшие преобразования выражений
    • 1.9. Решение алгебраических уравнений и их систем
    • 1.10. Графические возможности
  • Глава 2. Численные методы решения дифференциальных уравнений
    • 2.1. Общие сведения о дифференциальных уравнениях
    • 2.2. Численные методы решения задачи Коши для обыкновенного дифференциального уравнения первого порядка
      • 2.2.1. Метод Эйлера
      • 2.2.2. Метод Эйлера-Коши
      • 2.2.3. Метод Рунге-Кутта 4 порядка точности
    • 2.3. Решение краевых задач для обыкновенных дифференциальных уравнений методом конечных разностей
    • 2.4. Метод сеток для решения дифференциальных уравнений в частных производных
  • Глава 3. Нахождение решений дифференциальных уравнений в системе Maxima
    • 3.1. Встроенные функции для нахождения решений дифференциальных уравнений
    • 3.2. Решение дифференциальных уравнений и их систем в символьном виде
    • 3.3. Построение траекторий и поля направлений дифференциальных уравнений.
    • 3.4. Реализация численных методов решения задачи Коши для обыкновенных дифференциальных уравнений
      • 3.4.1. Метод Эйлера
      • 3.4.2. Метод Эйлера-Коши
      • 3.4.3. Метод Рунге-Кутта
    • 3.5. Реализация конечно-разностного метода решения краевой задачи для обыкновенных дифференциальных уравнений
    • 3.6. Реализация метода сеток для дифференциальных уравнений в частныхпроизводных
  • Задания для самостоятельного решения
  • Литература

Предисловие

Теория дифференциальных уравнений является одним из самых больших разделов современной математики. Одной из основных особенностей дифференциальных уравнений является непосредственная связь теории дифференциальных уравнений с приложениями. Изучая какие-либо физические явления, исследователь, прежде всего, создает его математическую идеализацию или математическую модель, записывает основные законы, управляющие этим явлением, в математической форме. Очень часто эти законы можно выразить в виде дифференциальных уравнений. Такими оказываются модели различных явлений механики сплошной среды, химических реакций, электрических и магнитных явлений и др. Исследуя полученные дифференциальные уравнения вместе с дополнительными условиями, которые, как правило, задаются в виде начальных и граничных условий, математик получает сведения о происходящем явлении, иногда может узнать его прошлое и будущее .

Для составления математической модели в виде дифференциальных уравнений нужно, как правило, знать только локальные связи и не нужна информация обо всем физическом явлении в целом. Математическая модель дает возможность изучать явление в целом, предсказать его развитие, делать качественные оценки измерений, происходящих в нем с течением времени. На основе анализа дифференциальных уравнений были открыты электромагнитные волны.

Можно сказать, что необходимость решать дифференциальные уравнения для нужд механики, то есть находить траектории движений, в свою очередь, явилась толчком для создания Ньютоном нового исчисления. Через обыкновенные дифференциальные уравнения шли приложения нового исчисления к задачам геометрии и механики.

Учитывая современной развитие компьютерной техники и интенсивное развитие нового направления - компьютерной математики - получили широкое распространение и спрос комплексы программ, называемые системами компьютерной математики.

Компьютерная математика - новое направление в науке и образовании, возникшее на стыке фундаментальной математики, информационных и компьютерных технологий. Система компьютерной математики (СКМ) - это комплекс программ, который обеспечивает автоматизированную, технологически единую и замкнутую обработку задач математической направленности при задании условия на специально предусмотренном языке.

Современные системы компьютерной математики представляют собой программы с многооконным графическим интерфейсом, развитой системой помощи, что облегчает их освоение и использование. Основными тенденциями развития СКМ являются рост математических возможностей, особенно в сфере аналитических и символьных вычислений, существенное расширение средств визуализации всех этапов вычислений, широкое применение 2D- и 3D-графики, интеграция различных систем друг с другом и другими программными средствами, широкий доступ в Internet, организация совместной работы над образовательными и научными проектами в Internet, использование средств анимации и обработки изображений, средств мультимедиа и др.

Существенным обстоятельством, которое до недавнего времени препятствовало широкому использованию СКМ в образовании, является дороговизна профессионального научного математического обеспечения. Однако в последнее время многие фирмы, разрабатывающие и распространяющие такие программы, представляют (через Internet - http://www.softline.ru) для свободного использования предыдущие версии своих программ, широко используют систему скидок для учебных заведений, бесплатно распространяют демонстрационные или пробные версии программ .

Кроме того, появляются бесплатные аналоги систем компьютерной математики, например, Maxima, Scilab, Octave и др.

В настоящем учебном пособии рассматриваются возможности системы компьютерной математики Maxima для нахождения решений дифференциальных уравнений.

Почему именно Maxima?

Во-первых, система Maxima - это некоммерческий проект с открытым кодом. Maxima относится к классу программных продуктов, которые распространяются на основе лицензии GNU GPL (General Public License).

Во-вторых, Maxima - программа для решения математических задач как в численном, так и в символьном виде. Спектр ее возможностей очень широк: действия по преобразованию выражений, работа с частями выражений, решение задач линейной алгебры, математического анализа, комбинаторики, теории чисел, тензорного анализа, статистических задач, построение графиков функций на плоскости и в пространстве в различных системах координат и т.д.

В-третьих, в настоящее время у системы Maxima есть мощный, эффективный и «дружественный» кроссплатформенный графический интерфейс, который называется WxMaxima (http://wxmaxima.sourceforge.net).

Авторами книги уже на протяжении десяти лет изучаются системы компьютерной математики такие как Mathematica, Maple, MathCad. Поэтому, зная возможности этих программных продуктов, в частности для нахождения решений дифференциальных уравнений, хотелось изучить вопрос, связанный с организацией вычислений в символьном виде в системах компьютерной математики, распространяемых свободно.

Настоящее пособие рассказывает о возможностях организации процесса поиска решений дифференциальных уравнений на базе системы Maxima, содержит в себе общие сведения по организации работы в системе.

Пособие состоит из 3 глав. Первая глава знакомит читателей с графическим интерфейсом wxMaxima системы Maxima, особенностями работы в ней, синтаксисом языка системы. Начинается рассмотрение системы с того, где можно найти дистрибутив системы и как его установить. Во второй главе рассматриваются общие вопросы теории дифференциальных уравнений, численные методы их решения.

Третья глава посвящена встроенным функциям системы компьютерной математики Maxima для нахождения решений обыкновенных дифференциальных уравнений 1 и 2 порядка в символьном виде. Также в третьей главе показана реализация в системе Maxima численных методов решения дифференциальных уравнений. В конце пособия приведены задания для самостоятельного решения.

Мы надеемся, что пособием заинтересуется широкий круг пользователей и оно станет их помощником в освоении нового инструмента для решения мате матических задач.

Т.Н. Губина, Е.В. Андропова
Елец, июль 2009

P.S. Быстрый старт: для выполнения команд и функций в mwMaxima нужно непосредственно сначала ввести саму команду и затем нажать crtl+Enter.

В системе Maxima имеется множество встроенных функций. Для каждой встроенной функции можно получить описание в документации, содержащейся в справочной системе. Вызвать справку можно с помощью функциональной клавиши F1. Также в Maxima есть специальная функция, которая выдает информацию из документации по конкретным словам. Сокращенная версия вызова этой функции: ?? name (Рис.12). Здесь?? - это имя оператора, и аргумент нужно отделять от него пробелом. Оператор?? выдает список тех разделов помощи и имен функций, которые содержат заданный текст, после чего предлагают ввести номер того раздела или описания той функции, которые требуется посмотреть:

Рис.12. Вызов справки по интересующей команде системы Maxima

Заметим, что в системе Maxima нет четкого разграничения между операторами и функциями. Более того,каждый оператор - это на самом деле функция.

Все функции и операторы Maxima работают не только с действительными, но и комплексными числами. Сами комплексные числа записываются в алгебраической форме, с мнимой единицей, обозначенной через %i; то есть в виде a+b*%i, где а и b - соответственно действительная и мнимая части числа.

Рассмотримсинтаксис базовых функций системы Maxima.

1. Арифметические операторы: + , -, *, /, -->. Пример:

3. Логические операторы: and, or, not. Пример:

4. Функция нахождения факториала числа: !

Факториал задан в наиболее общем виде и представляет собой, по сути, гамма-функцию (точнее, x! = gamma(x+1)), то есть определен на множестве всех комплексных чисел, кроме отрицательных целых. Факториал от натурального числа (и нуля) автоматически упрощается до натурального же числа.

5. Функция нахождения полуфакториала чила: !! (произведение всех четных (для четного операнда) или нечетных чисел, меньших либо равных данному).

6. Функция отрицания синтаксического равенства: # Запись a#b эквивалентна not a=b.Пример:

7. Функция нахождения модуля числа х: abs(x) Модуль определен для всех комплексных чисел. Пример:

8. Функция, возвращающая знак числа х: signum(x)

9. Функции, возвращающие наибольшее и наименьшее значения из заданных действительных чисел: max(x1,...,xn) и min(x1,...,xn).

10. Некоторые встроенные математические функции:

sqrt (x) Квадратный корень из x
acos (x) Арккосинус аргумента х
acosh (x) Гиперболический арккосинус аргумента х
acot (x) Арккотангенс аргумента х
acoth (x) Гиперболический арккотангенс аргумента х
acsc (x) Арккосеканс аргумента х
acsch (x) Гиперболический арккосеканс аргумента х
asec (x) Арксеканс аргумента х
asech (x) Гиперболический арксеканс аргумента х
asin (x) Арксинус аргумента х
asinh (x) Гиперболический арксинус аргумента х
atan (x) Арктангенс аргумента х
atanh (x) Гиперболический арктангенс аргумента х
cosh (x) Гиперболический косинус аргумента х
coth (x) Гиперболический котангенс аргумента х
csc (x) Косеканс аргумента х
csch (x) Гиперболический косеканс аргумента х
sec (x) Секанс аргумента х
sech (x) Гиперболический секанс аргумента х
sin (x) Синус аргумента х
sinh (x) Гиперболический синус аргумента х
tan (x) Тангенс аргумента х
tanh (x) Гиперболический тангенс аргумента х
log (x) Натуральный логарифм х
exp (x) Экспонента х

11. Функции для работы с матрицами:

determinant – нахождение определителя матрицы:

eigenvalues – нахождение собственных значений матрицы:

invert – получение обратной матрицы:

minor – определяет минор матрицы. Первый аргумент – матрица, второй и

третий – индексы строки и столбца соответственно:

rank – ранг матрицы:

submatrix – возвращает матрицу, полученную из исходной удалением

соответствующих строк и (или) столбцов. В качестве параметров следуют

номера удаляемых строк, исходная матрица, номера удаляемых столбцов.

transpose – транспонирование матрицы:

В языке системы Maxima заложены основные исполнимые операторы, которые есть в любом языке программирования. Рассмотрим их.

Операторы присваивания значений (именования выражений).

1. Оператор «:» (оператор задания значения переменной).

2.Оператор «:=» (оператор задания функции пользователя).

3.Расширенные варианты операторов присваивания и задания функции, обозначаемые соответственно через:: и::=.

Использование оператора задания функции пользователя значительно облегчает работу с ней, поскольку к ней можно обращаться по имени и легко и удобно вычислять значения функции в заданных точках.

Пример: найдем значение функции f (x,y )=cosx + siny в точке

Оператор цикла. Оператор цикла может задаваться несколькими способами. Способ задания зависит от того, известно ли заранее сколько раз необходимо выполнить тело цикла.

Пример: задание цикла для вывода значений переменной а в диапазоне от -3 до 10 с шагом 5:

Следующей важной возможностью системы Maxima являетсяработа со списками и массивами.

Для формирования списков используется команда makelist. Например, с помощью команды

мы сформировали список с именем x, состоящий из десяти элементов, значения которых находятся по формуле .

Для формирования массивов используется команда array. Например с помощью команды,

мы сформировали двумерный массив A, состоящий из 10 строк и 5 столбцов. Для заполнения массива элементами воспользуемся циклом с параметром. Например,

Для вывода элементов массива на экран можно воспользоваться командой:

Массив можно формировать и без предварительного объявления. В следующем примере мы сформировали одномерный массив x, состоящий из 5 элементов, значения которых вычисляются по формуле x(i )=sini

Неудобство работы с массивами заключается в том, что вывод значений элементов массива осуществляется в столбец. Гораздо удобнее, если значения массива (двумерного) выводятся в виде матрицы. Для этих целей можно воспользоваться командой genmatrix. Например, для формирования двумерного массива (матрицы) следует задать команду в следующем виде:

Выведем полученный массив:

6. Простейшие преобразования выражений.

По умолчанию в системе Maxima является активной функция автоупрощения, т.е. система старается упростить вводимое выражение сама без какой-либо команды.

Пример. Пусть требуется найти значение следующего числового выражения:

Зададим выражение по правилам языка системы Maxima.

Как видим, система в ответ вывела значение выражения, хотя мы не задали никакой команды.

Как же заставить систему вывести не результат, а само выражение? Для этого функцию упрощения надо отключить с помощью команды simp: false$. Тогда получим:

Для того чтобы активировать функцию упрощения, надо задать команду simp:true$. Функция автоупрощения может работать как с числовыми, так и с некоторыми не числовыми выражениями. Например,

При вводе мы можем обращаться к любой из предыдущих ячеек по ее имени, подставляя его в любые выражения. Кроме того, последняя ячейка вывода обозначается через %, а последняя ячейка ввода - через _. Это позволяет обращаться к последнему результату, не отвлекаясь на то, каков его номер. Но такими обращениями к ячейкам злоупотреблять не надо, поскольку при переоценивании всего документа или его отдельных ячеек ввода может произойти разногласие между номерами ячеек.

Пример. Найти значение выражения и увеличить полученный результат в 5 раз.

Желательно вместо имен ячеек использовать переменные и присваивать их имена любым выражениям. В этом случае в виде значения переменной может выступать любое математическое выражение.

Значения имен переменных сохраняются на протяжении всей работы с документом. Напомним, что если необходимо снять определение с переменной, то это можно сделать с помощью функции kill(name), где name - имя уничтожаемого выражения; причем это может быть как имя, назначенное вами, так и любая ячейка ввода или вывода. Точно так же можно очистить всю память и освободить все имена, введя команду kill(all) (или выбрать меню Махта->Очиститъ память (Clear Memory)). В этом случае очистятся в том числе и все ячейки ввода-вывода, и их нумерация опять начнется с единицы.

Функция автоупрощения далеко не всегда способна упростить выражение. В дополнение к ней имеется целый ряд команд, которые предназначены для работы с выражениями: рациональными и иррациональными. Рассмотрим некоторые из них.

rat (выражение) - преобразовывает рациональное выражение к канонической форме: раскрывает все скобки, затем приводит все к общему знаменателю, суммирует и сокращает; приводит все числа в конечной десятичной записи к рациональным. Каноническая форма автоматически «отменяется» в случае любых преобразований, не являющихся рациональными

ratsimp (выражение) - упрощает выражение за счет рациональных преобразований. Работает в том числе и «вглубь», то есть иррациональные части выражения не рассматриваются как атомарные, а упрощаются, в том числе, и все рациональные элементы внутри них

fullratsimp(выражение) - функция упрощения рационального выражения методом последовательного применения к переданному выражению функции ratsimp(). За счет этого функция работает несколько медленнее, чем ratsimp(), зато дает более надежный результат.

expand (выражение) - раскрывает скобки в выражении на всех уровнях вложенности. В отличии от функции ratexpand(), не приводит дроби-слагаемые к общему знаменателю.

radcan(выражение) - функция упрощения логарифмических, экспоненциальных функций и степенных с нецелыми рациональными показателями, то есть корней (радикалов).

Часто при попытке упрощения выражения в Maxima может происходить на самом деле только его усложнение. Увеличение результата может происходить из-за того, что неизвестно, какие значения могут принимать переменные, входящие в выражение. Чтобы этого избежать, следует накладывать ограничения на значения, которые может принимать переменная. Делается это с помощью функции assume(условие). Поэтому в некоторых случаях наилучшего результата можно добиться, комбинируя radcan() с ratsimp() или fullratsimp().

Так как в этом цикле статей речь пойдет о математической программе для символьных вычислений, для начала пару слов о том, что из себя представляют эти самые символьные или, как их еще называют, аналитические вычисления, в отличие от численных расчетов. Компьютеры, как известно, оперируют с числами (целыми и с плавающей запятой). К примеру, решения уравнения x 2 = 2 x + 1 можно получить как −0.41421356 и 2.41421356, а 3 x = 1 - как 0.33333333. А ведь хотелось бы увидеть не приближенную цифровую запись, а точную величину, т. е. 1±√2 в первом случае и 1/3 во втором. С этого простейшего примера и начинается разница между численными и символьными вычислениями. Но кроме этого, есть еще задачи, которые вообще невозможно решить численно. Например, параметрические уравнения, где в виде решения нужно выразить неизвестное через параметр; или нахождение производной от функции; да практически любую достаточно общую задачу можно решить только в символьном виде. Поэтому неудивительно, что и для такого класса задач появились компьютерные программы, оперирующие уже не только числами, а почти любыми математическими объектами, от векторов до тензоров, от функций до интегро-дифференциальных уравнений и т. д.

Максима в науке и образовании

Среди математического ПО для аналитических (символьных) вычислений наиболее широко известно коммерческое (Maple , Mathematica ); это очень мощный инструмент для ученого или преподавателя, аспиранта или студента, позволяющий автоматизировать наиболее рутинную и требующую повышенного внимания часть работы, оперирующий при этом аналитической записью данных, т. е. фактически математическими формулами. Такую программу можно назвать средой программирования, с той разницей, что в качестве элементов языка программирования выступают привычные человеку математические обозначения.

Программа, которая стала темой статьи, работает на тех же принципах и предоставляет похожий функционал; самое радикальное ее отличие - то, что она не является ни коммерческой, ни закрытой. Другими словами, речь идет о свободной программе. На самом деле использование свободного ПО более естественно для фундаментальной науки, нежели коммерческого, так как модель, которая используется в свободном ПО - это модель открытости и общедоступности всех наработок. Очевидно, эти же свойства присущи и результатам научной деятельности. Используя такую схожесть подходов, можно фактически рассматривать расширения функционала свободных программ или дополнительные библиотеки, которые могут создаваться для своих нужд в процессе научных исследований, как неотъемлемую часть результатов таких исследований. И эти результаты могут использоваться и распространяться на усмотрение пользователя без оглядки на ограничения, налагаемые лицензиями исходного ПО. В случае же коммерческого ПО, которое находится в собственности его производителя, такого рода свободы значительно ограничены, начиная от невозможности свободно (и законно) передавать само такое ПО вместе с наработками и вплоть до возможных патентных исков от компании-разработчика ПО в случае распространения самодельных дополнительных библиотек к нему.

С другой стороны, основное направление, кроме научных разработок, где такие программы востребованы - это высшее образование; а использование для учебных нужд именно свободного ПО - это реальная возможность и для вуза, и для студентов и преподавателей иметь в своем распоряжении легальные копии такого ПО без больших, и даже сколь-нибудь существенных, денежных затрат.

Эта статья открывает цикл, посвященный свободной программе аналитических вычислений Maxima . Этим циклом я постараюсь дать вам наиболее полное впечатление о программе: он будет посвящен как принципам и основам работы с Maxima, так и описанию более широких ее возможностей и практическим примерам.

Немного истории

История проекта, известного ныне под именем Maxima, началась еще в конце 60-х годов в легендарном MIT (Massachusetts Institute of Technology - Массачусетский Технологический институт), когда в рамках существовавшего в те годы большого проекта MAC началась работа над программой символьных вычислений, которая получила имя Macsyma (от MAC Symbolic MAnipulation). Архитектура системы была разработана к июлю 1968 г., непосредственно программирование началось в июле 1969. в качестве языка для разработки системы был выбран Lisp, и история показала, насколько это был правильный выбор: из существующих в то время языков программирования он единственный продолжает развиваться и сейчас - спустя почти полвека после старта проекта. Принципы, положенные в основу проекта, позднее были заимствованы наиболее активно развивающимися ныне коммерческими программами - Mathematica и Maple; таким образом, Macsyma фактически стала родоначальником всего направления программ символьной математики. Естественно, Macsyma была закрытым коммерческим проектом; его финансировали государственные и частные организации, среди которых были вошедшее в историю ARPA (Advanced Research Projects Agency; помните ARPAnet - предок интернета?), Энергетический и Оборонный Департаменты США (Departments of Energy & Defence, DOE and DOD). Проект активно развивался, а организации, контролирующие его, менялись не раз, как это всегда бывает с долгоживущими закрытыми проектами. в 1982 году профессор уильям Шелтер (William Schelter) начал разрабатывать свою версию на основе этого же кода, под названием Maxima. в 1998 году Шелтеру удалось получить от DOE права на публикацию кода по лицензии GPL. Первоначальный проект Macsyma прекратил свое существование в 1999 году. Уильям Шелтер продолжал заниматься разработкой Maxima вплоть до своей смерти в 2001 году. Но, что характерно для открытого ПО, проект не умер вместе со своим автором и куратором. Сейчас проект продолжает активно развиваться, и участие в нем является лучшей визитной карточкой для математиков и программистов всего мира.

Пару слов о программе

На данный момент Maxima выпускается под две платформы: Unix-совместимые системы, т. е. Linux и *BSD, и MS Windows. Я, конечно же, буду вести речь о Linux-версии.

Сама по себе Maxima - консольная программа, и все математические формулы отрисовывает обычными текстовыми символами. В этом есть как минимум два плюса. С одной стороны, саму Maxima можно использовать как ядро, надстраивая поверх нее графические интерфейсы на любой вкус. Их на сегодняшний день существует немало; в этот раз я остановлюсь на двух самых популярных (см. врезку) - и наиболее наглядных и удобных в работе, а об остальных поговорим в следующих выпусках; они тоже по-своему интересны, хотя более специфичны.

С другой стороны, сама по себе, без каких-либо интерфейсных надстроек, Maxima нетребовательна к железу и может работать на таких компьютерах, которые сейчас и за компьютеры уже никто не считает (это может оказаться актуальным, к примеру, для вуза или научной лаборатории, у которых денег на обновление парка машин скорее всего нет, а потребность в ПО для символьных вычислений возникнуть может).

Имена функций и переменных в Максиме чувствительны к регистру, то есть прописные и строчные буквы в них различаются. Это не будет в новинку любому, кто уже имел дело с POSIX-совместимыми системами или с такими языками программирования, как, скажем, C или Perl. Удобно это и с точки зрения математика, для которого тоже привычно, что заглавными и строчными буквами могут обозначаться разные объекты (например, множества и их элементы, соответственно).

Для того, чтобы начать работать с программой, вам понадобится пакет Maxima; если в стандартных репозитариях вашего дистрибутива его не окажется, то взять его можно на сайте проекта, адрес которого приведен во врезке.

Принципы работы с программой не зависят от того, какой интерфейс к ней вы выберете, поэтому я постараюсь Максимально абстрагироваться от конкретного интерфейса, ограничиваясь лишь небольшими комментариями в тех случаях, когда они ведут себя по-разному.

На данный момент последняя версия программы - 5.9.3, именно о ней я и буду говорить; если в вашем дистрибутиве пока присутствует более старая версия, вы в принципе можете использовать ее: и актуальная еще несколько месяцев назад 5.9.2, и вышедшая в конце прошлого года 5.9.1 не имеют с нынешней принципиальных различий.

Графические интерфейсы к Максиме

С точки зрения ознакомления с самой Maxima наибольший интерес представляют два интерфейса.

Первый - это отдельная самостоятельная графическая программа по имени . Она, как и сама Maxima, помимо Linux/*BSD существует еще и в версии для MS Windows. В wxMaxima вы вводите формулы в текстовом виде, а вывод Максимы отображается графически, привычными математическими символами. Кроме того, большой упор здесь сделан на удобство ввода: командная строка отделена от окна ввода-вывода, а дополнительные кнопки и система меню позволяют вводить команды не только в текстовом, но и в диалоговом режиме. Так называемое «автодополнение» в командной строке на самом деле с таковым имеет лишь то сходство, что вызывается клавишей « Tab ». Ведет же оно себя, к сожалению, всего лишь как умная история команд, т. е. вызывает ту команду из уже введенных в этой сессии, которая начинается с заданных в командной строке символов, но не дополняет до имен команд и их параметров. Таким образом, этот интерфейс наиболее удобен в том случае, когда вам нужно много вычислять и видеть результаты на экране; и еще, возможно, в том случае, если вы не очень любите вводить все команды с клавиатуры. Кроме того, wxMaxima предоставляет удобный интерфейс к документации по системе; хотя, так как документация поставляется в формате html, вместо этого можно использовать обычный браузер.


Второй достаточно интересный интерфейс к Maxima - это дополнительный режим в редакторе . Хотя этот редактор имеет общее историческое прошлое с широко известным Emacs, что явствует из названия, но практического сходства между ними мало. TeXmacs разрабатывается для визуального редактирования текстов научной тематики, при котором вы видите на экране редактируемый текст практически в том же виде, в котором он будет распечатан. В частности, он имеет так называемый математический режим ввода, очень удобный для работы с самыми разнообразными формулами, и умеет импортировать/экспортировать текст в LaTeX и XML/HTML. Именно возможностями по работе с формулами пользуется Maxima, вызванная из TeXmacs’а. Фактически, формулы отображаются в привычной математической нотации, но при этом их можно редактировать и копировать в другие документы наподобие обыкновенного текста. Maxima-сессия вызывается из меню: «вставить Сессия Maxima », при этом появляется дополнительное меню с командами Максимы. После запуска сессии можно уже внутри нее перейти в математический режим ввода (меню режимов ввода вызывается первой кнопкой на панели ввода) и при вводе также использовать элементы математической нотации. Этот интерфейс будет наиболее удобен тем, кто хочет использовать результаты вычислений в своих текстах и любит редактировать их в визуальном режиме.



Приступаем к работе

После запуска Maxima-сессии мы видим перед собой такие строки:

Maxima restarted. (%i1)

Первая - это сообщение о том, что ядро Максимы только что запустилось (вместо нее, в зависимости от версии и конкретной сборки, может выводиться краткая информация о программе); вторая - приглашение к вводу первой команды. Команда в Максиме - это любая комбинация математических выражений и встроенных функций, завершенная, в простейшем случае, точкой с запятой. После ввода команды и нажатия « Enter » Maxima выведет результат и будет ожидать следующей команды:


Для арифметических действий используются традиционные обозначения: - , + , * , / ; ** или ^ для возведения в степень, sqrt() для квадратного корня.

Если для каких-то обозначений будет неочевидно, как записать их в строку, я буду пояснять это по ходу изложения.

Как видите, каждая ячейка имеет свою метку; эта метка - заключенное в скобки имя ячейки. Ячейки ввода именуются как %i с номером (i от input - ввод), ячейки вывода - как %o с соответствующим номером (o от output - вывод). Со знака % начинаются все встроенные служебные имена: чтобы, с одной стороны сделать их достаточно короткими и удобными в использовании, а с другой - избежать возможных накладок с пользовательскими именами, которые тоже часто удобно делать короткими. Благодаря такому единообразию вам не придется запоминать, как часто бывает в других системах, какие из таких коротких и удобных имен зарезервированы программой, а какие вы можете использовать для своих нужд. К примеру, внутренними именами %e и %pi обозначены общеизвестные математические постоянные; а через %c с номером обозначаются константы, используемые при интегрировании, для которых использование буквы «c» традиционно в математике.

При вводе мы можем обращаться к любой из предыдущих ячеек по ее имени, подставляя его в любые выражения. Кроме того последняя ячейка вывода обозначается через % , а последняя ячейка ввода - через _ . Это позволяет обращаться к последнему результату, не отвлекаясь на то, каков его номер.

Здесь %+47/59 - то же самое, что %o1+47/59 .

Вывод результата вычисления не всегда нужен на экране; его можно заглушить, завершив команду символом $ вместо; . Заглушенный результат при этом все равно вычисляется; как видите, в этом примере ячейки %o1 и %o2 доступны, хотя и не показаны (к ячейке %o2 обращение идет через символ % , смысл которого расшифрован выше):

Каждую следующую команду не обязательно писать с новой строки; если ввести несколько команд в одну строчку, каждой из них все равно будет соответствовать свое имя ячейки. К примеру, здесь в строке после метки %i1 введены ячейки от %i1 до %i4 ; в ячейке %i3 используются %i1 и %i2 (обозначенная как _ - предыдущий ввод):


В wxMaxima и TeXmacs последнюю или единственную команду в строке можно не снабжать завершающим символом - это сработает так же, как если бы она была завершена; , т. е. вывод заглушен не будет. В дальнейших примерах я часто буду опускать; . Если вы выберете другой интерфейс, не забывайте ее добавлять.

Помимо использования имен ячеек, мы, естественно, можем и сами давать имена любым выражениям. По-другому можно сказать, что мы присваиваем значения переменным, с той разницей, что в виде значения такой переменной может выступать любое математическое выражение. Делается это с помощью двоеточия - знак равенства оставлен уравнениям, которые, учитывая общий математический контекст записи, проще и привычнее так читаются. И к тому же, так как основной конек Максимы - символьная запись и аналитические вычисления, уравнения достаточно часто используются. Например:

В каком-то смысле двоеточие даже нагляднее в таком контексте, чем знак равенства: это можно понимать так, что мы задаем некое обозначение, а затем через двоеточие расшифровываем, что именно оно обозначает. После того, как выражение поименовано, мы в любой момент можем вызвать его по имени:

Любое имя можно очистить от присвоенного ему выражения функцией kill() , и освободить занимаемую этим выражением память. Для этого нужно просто набрать kill(name) , где name - имя уничтожаемого выражения; причем это может быть как имя, назначенное вами, так и любая ячейка ввода или вывода. Точно так же можно очистить разом всю память и освободить все имена, введя kill(all) . В этом случае очистятся в том числе и все ячейки ввода-вывода, и их нумерация опять начнется с единицы. В дальнейшем, если по контексту будет иметься в виду логическое продолжение предыдущих строк ввода-вывода, я буду продолжать нумерацию (этим приемом я уже воспользовался выше). Когда же новый «сеанс» будет никак не связан с предыдущим, буду начинать нумерацию заново; это будет косвенным указанием сделать « kill(all) », если вы будете набирать примеры в Maxima, так как имена переменных и ячеек в таких «сеансах» могут повторяться.

Доступ к документации Максимы

В примерах выше мы воспользовались двумя встроенными функциями. Как нетрудно догадаться из контекста, solve - это функция решения уравнения, а diff - функция дифференцирования. Практически весь функционал Maxima реализован через такие встроенные функции. Функция в Maxima может иметь переменное число аргументов. Например, функция solve , которую мы использовали с одним аргументом, чаще вызывается с двумя аргументами. Первый задает уравнение или функцию, чьи корни надо найти; второй - переменную, относительно которой нужно решать уравнение:


Если формула, задающая решаемое уравнение, содержит только один символ, как в предыдущем примере, то второй аргумент можно опустить, так как выбор, относительно чего нужно решать уравнение, все равно однозначен.

Вторая функция из наших новых знакомых - diff - также может принимать один аргумент; в этом случае она находит дифференциал заданного выражения:

Через del(x) и del(y) здесь обозначены дифференциалы соответствующих символов.

Для каждой встроенной функции есть описание в документации по Maxima. Оно содержит сведения о том, какие аргументы и в каких вариантах принимает функция, а также описание ее действия в разных случаях и конкретные примеры применения. Но, конечно, искать описание каждой нужной функции в html-документации или info-страницах не всегда удобно, тем более, что нужна эта информация, как правило, прямо в процессе работы. Поэтому в Maxima есть специальная функция - describe() , которая выдает информацию из документации по конкретным словам. Более того, специально для удобства получения справочной информации существует сокращенная версия вызова этой функции: ? name вместо describe(name) . Здесь? - это имя оператора, и аргумент нужно отделять от него пробелом (выражение?name используется для вызова функции Lisp с именем name). Функция describe и оператор? выдают список тех разделов помощи и имен функций, которые содержат заданный текст, после чего предлагают ввести номер того раздела или описания той функции, которые вы хотите посмотреть:

Когда вы выберете раздел, будет выдано его содержимое:


Если для слова, которое вы ввели после? или describe , найдено единственное совпадение, его описание будет показано сразу.

Кроме справки, по многим функциям Maxima есть примеры их использования. Пример можно загрузить функцией example() . Вызов этой функции без аргумента отобразит список всех имен доступных примеров; вызов вида example(name) загрузит в текущую сессию и выполнит указанный файл примера:


Решение проблемы с запуском из-под TeXmacs

Если у вас возникли проблемы с запуском Maxima-сессии из TeXmacs, обратите внимание на то, кто у вас в системе выступает под именем /bin/sh . Дело в том, что инициализация всех разнообразных сессий реализована в TeXmacs’е через shell-скрипты, вызываемые именно с помощью /bin/sh . И в скрипте, отвечающем за сессию Maxima, используется возможность, которая не стандартизирована как обязательная для /bin/sh , но присутствует в его эмуляции bash. Другими словами, если у вас /bin/sh является не ссылкой на /bin/bash , а чем-то другим, то именно это может послужить причиной невозможности открыть Maxima-сессию (к примеру, в Debian и основанных на нем дистрибутивах кроме bash ссылку /bin/sh на себя может захотеть поставить еще и более легкий dash ; в этом случае восстановить статус-кво можно с помощью dpkg-reconfigure dash). Если сделать /bin/sh ссылкой на /bin/bash не представляется возможным, можете попробовать поменять #!/bin/sh на #!/bin/bash в файле /usr/lib/texmacs/TeXmacs/bin/maxima_detect . Я написал об этой проблеме разработчикам TeXmacs, но еще не получил никакой их реакции, так что не могу пока сказать, будет ли исправлена эта недоработка в ближайших версиях.

Основные принципы

То, что Максима написана на Lisp, человеку, знакомому с этим языком, становится понятно уже в начале работы с программой. Действительно, в Максиме четко прослеживается «лисповский» принцип работы с данными, который оказывается очень кстати в контексте символьной математики и аналитических вычислений. Дело в том, что в Lisp, по большому счету, нет разделения на объекты и данные: имена переменных и выражения могут использоваться практически в одном и том же контексте. В Maxima же это свойство развито еще сильнее: фактически, мы можем использовать любой символ вне зависимости от того, присвоено ли ему какое-то выражение. По умолчанию символ, связанный с любым выражением, будет представлять это выражение; символ, не связанный ни с чем, будет представлять самого себя, трактуемого опять-таки как выражение. Поясним на примере:

Из этого следует, в частности, что в выражение автоматически подставляется значение входящего в него символа только в том случае, если это значение было приписано символу до определения выражения:

Если некоторый символ уже имеет какое-то значение, можем ли мы использовать в выражении сам этот символ, а не его значение? Конечно. Сделать это можно с помощью знака апострофа - введенный перед любым символом или выражением, он предотвращает его вычисление:

Результат выражения %i12 был бы аналогичен и в том случае, если бы b и y не имели на тот момент никаких значений; таким образом, мы можем смело блокировать вычисление символа, даже не запоминая (или не зная), присвоены ли им вообще какие-то выражения.

Точно так же можно поступить с любой встроенной функцией, если мы хотим не выполнить ее, а использовать в своем математическом контексте. Например, уже упомянутая функция дифференцирования может пригодиться нам для обозначения производной в дифференциальном уравнении; в этом случае, конечно, вычислять ее не надо:

Благодаря описанным особенностям работа в Максиме, с одной стороны, становится во многом похожей на традиционную «ручную» работу с математическими формулами, что практически сводит на нет психологический барьер в начале работы с программой. С другой стороны, даже на этом начальном этапе вы фактически избавлены от наиболее рутинной ручной работы, вроде отслеживания текущих значений символов, и можете полностью сосредоточиться на самой задаче. Конечно, блокировка вычислений - это не единственный способ влиять на то, как Максима будет вычислять то или иное выражение; этим процессом можно управлять довольно гибко.

Введение
Maxima - свободная система компьютерный алгебры (Computer algebra system - CAS), основанная на Common Lisp. В своих функциональных возможностях она едва уступает другим современным платным CAS, таким как Mathcad, Mathematica, Maple; может проводить аналитические (символьные) вычисления, численные расчеты, строить графики (при помощи gnuplot). Имеется возможность написания скриптов и даже трансляции их в код на Common Lisp с последующей компиляцией. В виду того, что maxima писалась из разрабатывалась программистами lisp, ее синтаксис может показаться несколько запутанным, поскольку язык является сразу и императивным и функциональным. Я попытаюсь разъяснить именно эти моменты и доступно изложить суть функционального подхода, и совсем не буду акцентировать внимания на конкретных математических функциях: их довольно легко освоить самостоятельно. В данной статье рассматривается именно особенности исчисления и синтаксических конструкций maxima.
Оболочки
Разумеется, вызывать интерпретатор maxima из консоли не очень удобно. Мы хотим смотреть на красивые формулы, которые отрендерены с помощью latex. Поэтому, для начинающих, я бы посоветовал поставить оболочку . Если вы увлекаетесь TeXmacs - можете настроить и его в качестве оболочки (если честно, я не пробовал). Ну и для любителей emacs есть imaxima , для работы в буфере. Ставится он буквально из коробки.
Знакомство
На первый взгляд все просто: вводим выражение, заканчивающееся точкой с запятой, получаем ответ. Можете испробовать maxima в качестве калькулятора, вычислить сумму двух чисел, подсчитать синус угла и т.п. Копнем глубже, что же происходит.
Атомы
Символы, числа и логические константы true и false представляют собой простейшие объекты системы. Из них выстраиваются все остальные выражения и структуры языка, поэтому их называют атомарными (неделимыми) или просто атомами.
Переменные

В системе различают свободные и означенные переменные. Означенные переменные - связанные переменные, переменные к которым приписано какое то значение. При интерпретации имя переменной заменяется на ее значение. Задать переменную можно с помощью знака ":". Свободные переменные не связаны не с каким значением и мы можем оперировать с ними абстрактно, например, складывать два символьных выражения.

Контекст вычисления
При вычислении каждой команды формируется ее вычислительный контекст. Он представляет собой совокупность связей между именами переменных и их значениями, а так же некоторые параметры интерпретации. Различают два вычислительных контекста: локальный и глобальный. Глобальный контекст - общий для всех интерпретируемых команд, определяет текущее состояние интерпретатора. Локальный контекст создается на время выполнения одной команды, и действителен только для нее. Наиболее приоритетными являются связи и параметры локального контекста.


Здесь значение переменной a берется из глобального контекста, а для локального устанавливается опция развертывания произведений, т.е. дальше произведения не будут развертываться сами по себе.
Блокировка вычислений

Попробуем сложить две переменные. А теперь поставим перед ними символ одинарной ковычки. Это оператор блокировки вычислений. Если мы поставим его перед именем переменной - в результате получим имя этой переменной, перед вызовом функции - символьное выражение вызова функции. Зачем? Иногда вам может потребоваться с помощью одной функции обработать выражение другой функции и на выходе получить функцию или число, например вычисление неопределенного интеграла. Другими словами вы имеете возможность представлять выражение как данные и манипулировать с ним. Однако если вы попробуете остановить вычисление суммы двух чисел, то вычисления не прекратятся. Это связано с тем, что оператор одинарной кавычки не останавливает простейшего упрощения выражения (простые операции над числами, сокращение дробей). Так же вычисления не остановятся, если вы попытаетесь посчитать значение функции рационального (float) аргумента.
И так, система Maxima не различает функции алгоритмические и функции математические, в ней они являются одним языковым элементом. В терминологии самого интерпретатора, операторы которые могут быть вычислены называются verb, те операторы, которые так остаются в невычесленом виде называются noun. Для инициирования вычисления всех noun необходимо в контексте вычислений выставить опцию nouns.

Вычисления
Мы узнали, что интерпретатор различает понятия символьного выражения и его вычисления. В каких случаях происходит вычисление? Самый очевидный случай - когда мы пытаемся посчитать какое то выражение (2+3, например). Ввели выражение - получили его значение. Посчитали функцию от аргумента - получили значение. Ввели имя переменной - получили ее значение. Мы узнали, что значением у переменной может быть как атом, так и символьное выражение. Когда еще происходит вычисление? Вычисление происходит при присваивание переменной значения. Значение стоящее справа от двоеточия вычисляется перед присвоением, поэтому при присвоении переменной символьного выражения мы ставим кавычку, что бы остановить это вычисление. Есть особенный вид присвоения (оператор два двоеточия), когда вычисляется как выражение справа, так и выражение слева. Так же перед вычислением функции вычисляются все ее аргументы.

Результатом вычисления переменной a слева оказывается переменная b.
Пример
Рассмотрим простой пример - построение множества всех подмножеств. Как оказалось, Maxima имеет встроенные типы для работы с множествами, а такой функции, увы, нет. Напишем ее.

Для начала разберемся что есть множества. По видимому, множества в Maxima основаны на другой структуре данных - односвязных списках. Что такое список понимают все. Они имеют три основные функции для работы с ними: получение элемента в голове списка (first), получение списка состоящего из исходного без первого элемента (rest), добавление нового элемента в начало (cons) и объединение двух списков (append). Аналогичные функции имеются и в любой реализации lisp, но чаще всего, называются немного по другому: car, cdr, cons, append соответственно.

Как вы обычно представляли себе алгоритм для решения такой задачи? Можно было бы представить подмножества в виде характеристического вектора и перебрать их все. Однако покажем именно функциональный подход. Нетрудно заметить, что каждый элемент входит ровно в половину подмножеств. Этого простого факта уже достаточно для того, что бы построить рекурсивный алгоритм. Выкинем один элемент a из множества A. Множество всех подмножеств A будет состоять из объединения множества всех подмножеств A\a и множества всех подмножества A\a, где к каждому элементу добавлено a. С помощью последнего утверждения можно сколько угодно рекурсивно понижать размерность задачи, сведя ее к тривиальному случаю. Для реализации нам необходима дополнительная функция от двух параметров (элемента и множества множеств), которая добавляла бы указанный элемент в каждое множество.

Обратим внимание, что объявление функции происходит почти как и в математике. Следует обратить внимание, что при определении правая часть после знака равно не вычисляется. (Для того что бы определить функцию так, что бы ее определение вычислялось необходимо использовать форму define). Здесь появляется новая вычислительная форма if. Она работает так же как и в императивных языках. При выполнении условия вычисляется выражение после then, при невыполнении - после else. Теперь запишем искомую функцию.

Попробуем что нибудь посчитать.

Конец
Ну вот и все. В следующей статье было бы неплохо описать реализацию наискорейшего градиентного спуска.