Что такое постоянная баллистического гальванометра. Висит от сопротивления цепи, поэтому определять ее необходимо при том сопро

ЛАБОРАТОРНАЯ РАБОТА № 2.14

«ОПРЕДЕЛЕНИЕ ЭЛЕКТРОЁМКОСТИ КОНДЕНСАТОРА С ПОМОЩЬЮ

БАЛЛИСТИЧЕСКОГО ГАЛЬВАНОМЕТРА»

Цель работы : экспериментальное определение динамической постоянной баллистического гальванометра и ёмкости конденсатора.

Описание электрической схемы

Электрическая схема, используемая в настоящей лабораторной работе, представлена на рис. 1. Здесь G – гальванометр баллистический, С – конденсатор, П – переключатель, V – вольтметр, Б – батарея ЭДС.

Рис. 1. Принципиальная схема установки

Когда переключатель П установлен в левое положение, происходит заряд конденсатора от батареи Б и одновременно гальванометр шунтируется критическим сопротивлением (не указанным в схеме). Благодаря этому рамка его устанавливается в положение равновесия. Когда переключатель П установлен в правое положение, конденсатор разряжается через гальванометр.

Пояснения к работе

Баллистический гальванометр предназначен для измерения количества электричества, протекающего через его рамку за время, значительно меньше периода её собственных колебаний. Баллистический гальванометр отличается от обычного гальванометра магнитоэлектрической системы тем, что подвижная часть его делается более массивной и обладает большим моментом инерции j .

Рис. 2. Устройство гальванометра баллистического гальванометра.

Рис. 3. Схема устройства баллистического гальванометра (вид сверху).

Проволочная рамка 1 и цилиндр из мягкого железа 2 подвешены на металлической нити в кольцевом зазоре между полюсами постоянного магнита N и S. Нить снабжена зеркальцем. Для измерения отклонения рамки от положения равновесия используется луч света, который направляется от лампочки на зеркальце и, отразившись от него, попадает на шкалу.

При кратковременном протекании тока J на рамку 1 со стороны внешнего магнитного поля действует пара сил Ампера , создающая вращающий момент.



Длительность импульса тока t много меньше периода собственных колебаний рамки Т (t << Т ), т.к. подвижная часть гальванометра имеет большой момент инерции (из-за цилиндра 2). Поэтому воздействие на рамку момента сил Ампера имеет характер "удара" (отсюда название гальванометра).

При повороте рамки ее кинетическая энергия переходит в потенциальную энергию закрученной нити. Вместе с рамкой на угол a 0 поворачивается и зеркало (световой луч смещается на угол 2a 0 ). (рис. 3)


Движение рамки баллистического гальванометра описывается тем же уравнением, что и в случае обычного гальванометра магнитоэлектрической системы:

J
, (1)

где К 1 – коэффициент крутильной упругости; К 2 – коэффициент электромагнитного торможения; В – модуль магнитной индукции; S – площадь рамки; n – нормаль к контуру.

Так как момент инерции j велик, в левой части уравнения (1) можно пренебречь вторым и третьим членами по сравнению с первым:

j . (2)

Количество электричества q , прошедшее через рамку за время t , можно определить, интегрируя уравнение (2):

j
. (3)

Кинетическая энергия рамки гальванометра равна

(4)

которая переходит в потенциальную энергию закручивающейся на угол α нити:

. (5)

Момент инерции может быть определён из формулы для периода Т 0 упругих крутильных колебаний:

(6)

Подставив формулы (4)-(6) в (3) и учитывая, что Е К =Е П , имеем

, (7)

Обозначим . Из выражения (7) видно, что максимальный поворот рамки баллистического гальванометра пропорционален количеству протёкшего через него электричества:

, (8)

где величина β – динамическая постоянная гальванометра. Она определяет количество электричества, при протекании которого через рамку последняя повернётся на угол, равный 1 радиану.

Угол отклонения "зайчика" равен

, (9)

где n – отклонение светового «зайчика» по шкале;

l – расстояние от зеркала до шкалы.

Подставляя значение q из формулы для ёмкости конденсатора в формулу (8) и учитывая выражение (9), получим:

. (10)

Порядок выполнения работы

Упражнение 1: Определение динамической постоянной.

1. Включить в схему эталонный конденсатор С 0 с известной ёмкостью.

2. Переключателем SA замкнуть цепь

3. Переключатель П установить в положение «заряд» и зарядить конденсатор С 0 .

4. Переключатель П установить в положение «разряд» и отметить крайнее деление n 0 , до которого передвинется зайчик во время первого колебания в процессе разрядки конденсатора через гальванометр.

5. Пункты 3-4 повторить 5 раз.

Упражнение 2: Определение ёмкости конденсатора.

1. Включить в схему конденсатор с неизвестной ёмкостью С 1 .

2. П.п. 2-5 упр. 1 повторить 5 раз (п 1 ).

3. Включить в схему конденсатор С 2 .

4. П.п. 2-5 упр. 1 повторить 5 раз (п 2 ).

5. Включить в схему конденсатор С пар , являющийся параллельным соединением С 1 и С 2 (п.п. 2-5 упражнения 1 повторить 5 раз) п пар .

6. Включить в схему конденсатор С посл – (последовательное соединение С 1 и С 2 ) (п.п. 2-5 упражнения 1 повторить 5 раз) п посл .

Таблица измерений

1. Данные электрической схемы:

– длина от зеркала до шкалы l = 180 мм, Δl = 0,5 мм ;

– ёмкость эталонного конденсатора С 0 = 0,047 мкФ ; .

2. Определение отклонения светового «зайчика» n :

№ опыта n 0 , дел Δn 0 , дел n 1 , дел Δn 1 , дел n 2 , дел Δn 2 , дел (n ) пар , дел Δ(n) пар , дел (n) посл , дел Δ(n) посл , дел
Ср. зн.

Обработка результатов измерения .

2. Определить относительную погрешность по формуле

,

ΔU определить из класса точности вольтметра, Δn 0 - сумма приборной и случайной погрешностей.

4. Определить соответствующие относительные погрешности по формуле:

.

5. Найти величины С пар и С посл по следующим формулам:

; .

6. Сравнить экспериментальные и расчетные значения С пар и С посл .

Контрольные вопросы

1.Что такое электроёмкость? В каких единицах она измеряется в системах СИ, СГСЭ?

2. Объясните устройство и принцип действия баллистического гальванометра?

3.Какая электрическая величина измеряется с помощью баллистического гальванометра?

4.Каков физический смысл динамической постоянной β ?

5.Какую величину измерит баллистический гальванометр, если к нему подключить источник постоянного тока?

6.Опишите процесс разрядки конденсатора; приведите формулу для тока разряда конденсатора через некоторое сопротивление.

Задача №1

Конденсаторы соединены так, как это показано на рис.1. Электроемкости конденсаторов: , , , . Определить электроемкость С батареи конденсаторов.

Задача №2

Определить электроемкость С схемы, представленной на рис.2, где , , , , .

С 21
С 1
С 4321
С 321
Рис.1
С 54321
С 1
С 21
С 321
С 4321
С 1
С 21
С 321
С 4321
С 54321
Рис.2
Рис.3

Задача №3

Пять различных конденсаторов соединены согласно схеме, приведенной на рис.3. Определить электроемкость С 4 , при которой электроемкость всего соединения не зависит от величины электроемкости С 5 . Принять , , .

Задача №4

Между пластинами плоского конденсатора, заряженного до разности потенциалов , находятся два слоя диэлектриков: стекла толщиной и эбонита толщиной . Площадь S каждой пластины конденсатора равна 200см 2 . Найти: 1) электро­емкость С конденсатора; 2) смещение D, напряженность Е поля и падение потенциала U в каждом слое.

Задача №5

В плоский конденсатор вдвинули плитку парафина тол­щиной , которая вплотную прилегает к его пластинам. Насколько нужно увеличить расстояние между пластинами, чтобы получить прежнюю емкость?

Задача №6

Конденсатор емкостью периодически заряжается от батареи с ЭДС и разряжается через катушку в форме кольца диаметром , причем плоскость кольца совпадает с плоскостью магнитного меридиана. Катушка имеет витка. Помещенная в центре катушки горизонтальная магнитная стрелка отклоняется на угол . Переключение конденсатора происходит с частотой . Найти из данных это­го опыта горизонтальную составляющую Н г напряжен­ности магнитного поля Земли.

Задача №7

Конденсатор емкостью периодически заряжается от батареи с ЭДС и разряжается через соленоид длиной . Соленоид имеет витков. Среднее значение напряженности магнитного поля внутри соленоида . С какой частотой п проис­ходит переключение конденсатора? Диаметр соленоида считать малым по сравнению с его длиной.

Задача №8

На соленоид длиной и площадью по­перечного сечения надета катушка, состоящая из витков. Катушка соединена с баллистическим галь­ванометром, сопротивление которого . По обмотке соленоида, состоящей из витков, идет ток . Найти баллистическую постоянную С гальванометра, если известно, что при выключении тока в соленоиде гальванометр дает отброс, равный 30 делениям шкалы (­ Баллистической постоянной гальванометра называется вели­чина, численно равная количеству электричества, которое вызывает отброс по шкале на одно деление). Сопротивлением катушки по сравнению с сопротивлением баллистического гальванометра пренебречь.

Задача №9

Для измерения индукции магнитного поля меж­ду полюсами электромагнита помещена катушка, состоя­щая из витков проволоки и соединенная с баллисти­ческим гальванометром. Ось катушки параллельна направлению магнитного поля. Площадь поперечного сече­ния катушки . Сопротивление гальванометра ; его баллистическая постоянная . При быстром выдергивании катушки из магнитного поля гальванометр дает отброс, равный 50 делениям шкалы. Найти индукцию В магнитного поля. Сопротивлением ка­тушки по сравнению с сопротивлением баллистического гальванометра пренебречь.

Задача №10

витков тонкой проволоки, намотанной на прямоугольный каркас длиной и шириной , подвешена на нити в магнитном поле с индукцией . По катушке течет ток . Найти вращающий момент М , действующий на катушку гальванометра, если плоскость катушки: 1) параллельна направлению магнитного поля; 2) составляет угол с направлением магнитного поля.

Задача №11

На расстоянии от длинного прямолинейного вертикального провода на нити длиной и диаметром висит короткая магнитная стрелка, маг­нитный момент которой . Стрелка находится в плоскости, проходящей через провод и нить. На какой угол повернется стрелка, если по проводу пустить ток ? Модуль, сдвига материала нити . Система экранирована от магнитного поля Земли.

Задача №12

Катушка гальванометра, состоящая из витков проволоки, подвешена на нити длиной и диаметром в магнитном поле напряженностью так, что ее плоскость параллельна направ­лению магнитного поля. Длина рамки катушки и ширина . Какой ток I течет по обмотке катушки, если катушка повернулась на угол ? Модуль сдвига материала нити .

Задача №13

Квадратная рамка подвешена на проволоке так, что направление магнитного поля составляет угол с нормалью к плоскости рамки. Сторона рамки . Магнитная индукция поля . Если по paмке пропустить ток , то она поворачивается на, угол . Найти модуль сдвига G материала проволоки. Длина проволоки , радиус нити ­

Задача №14

Зеркальце гальванометра подвешено на проволоке длиной и диаметром . Найти закручивающий момент М , соответствующий отклонению зайчика на величину по шкале, удаленной на расстояние от зеркальца . Модуль сдвига материала проволоки .

Задача №15

При протекании электрического тока через обмотку гальванометра на его рамку с укрепленным на ней зеркальцем действует закручивающий момент , Рамка при этом поворачивается на малый угол . На это закручивание идет работа . На какое расстояние а переместится зайчик от зеркальца по шкале, удаленной на расстояние от гальванометра?

Существуют различные методы измерения емкости: метод амперметра-вольтметра, мостовой метод, метод баллистического гальванометра, по времени разряда конденсатора через резистор известного сопротивления, резонансный метод и др. Рассмотрим их более подробно.

Одним из наиболее простых является метод амперметра-вольтметра. Он основан на измерении емкостного сопротивления конденсатора, которое обратно пропорционально емкости и частоте электрического тока: ,

Следовательно, для измерения емкости этим методом необходимо знать частоту напряжения, подаваемого от источника питания.

Баллистическими называют чувствительные гальванометры, у которых период собственных колебаний рамки очень большой. В баллистическом режиме может работать любой прибор магнитоэлектрической системы, если ток в цепи прибора протекает в течение времени, во много раз меньшего периода собственных колебаний его подвижной рамки. При разряде конденсатора через баллистический гальванометр отброс стрелки гальванометра пропорционален протекающему через него заряду. Проведем следующий эксперимент. Зарядим конденсатор до напряжения U и, разрядив его через гальванометр, заметим величину отброса стрелки. Повторим опыт, увеличивая напряжение в 2, 3 и т.д. раз. Каждый раз отношение напряжения к числу делений, на которые отклонялась стрелка, будет величиной постоянной. Затем, не изменяя напряжения, проведем эксперимент с конденсаторами емкостью C, 2С, 3С и т.д. Обнаружим, что отношение емкости конденсатора к числу делений, на которые отклонилась стрелка, тоже величина постоянная.

Баллистическая постоянная гальванометра - это отношение заряда q, протекшего через рамку гальванометра, к числу делений n, на которое отклонилась стрелка: k = q/n. Для определения баллистической постоянной несколько раз проводят опыт с конденсаторами известной емкости. Заряд конденсатора рассчитывается по формуле q = CU, где q - заряд на одной из обкладок конденсатора, C - емкость конденсатора, а U - напряжение между обкладками конденсатора. Тогда k = CU/n. Из нескольких опытов при различных напряжениях между обкладками конденсатора и различных значениях емкости определяют среднее значение баллистической постоянной гальванометра.

Затем включают в цепь конденсатор неизвестной емкости и повторяют опыт. Зная баллистическую постоянную и число делений, на которое отклонилась стрелка гальванометра, определяют емкость: Cx = kn/U.

Для измерения емкости можно использовать любой прибор магнитоэлектрической системы при условии, что произведение емкости конденсатора на внутреннее сопротивление прибора будет значительно меньше периода собственных колебаний стрелки прибора. В этом случае конденсатор полностью разряжается за время, много меньшее периода собственных колебаний, и изменение сопротивления резистора, включенного последовательно с гальванометром, никак не влияет на отброс стрелки гальванометра.


тивлении цепи, при котором производится измерение магнитного потока. Кроме того, так как точность интегрирования импульса зависит от его длительности, из-

менение потока должно происходить достаточно быстро,чтобы продолжительность

импульса была в 20 – 30 раз меньше периода колебаний подвижной части гальва-

Для определения постоянной баллистического гальванометра по магнитному по-

току используют меру магнитного потока в виде двухобмоточной катушки с извест-

ной взаимной индуктивностью.

При изменении тока в первичной обмотке катушки взаимной индуктивности на не-

которую величину DI во вторичной ее обмотке, присоединенной к баллистическому гальванометру (см. рис. 4), произойдет изменение магнитного потока:

где М – коэффициент взаимной индуктивности катушки.

Это изменение потока DF вызовет отброс подвижной части баллистического галь-

ванометра b1m.

Отсюда интерисующая нас постоянная баллистического гальванометра по магнит-

ному потоку будет

Сф=, Вб¤дел.

Баллистический гальванометр в рассмотренной схеме можно заменить вебермет-

В магнитоэлектрическом веберметре используется измерительный механизм маг-

нитоэлектрической системы с противодействующим моментом, близким к нулю, и большим моментом электромагнитного торможения (рамка веберметра замкнута на измерительную катушку, имеющую обычно малое сопротивление).

Уравнение движения подвижной части веберметра можно записать в следующем виде:

Ток i определяется э.д.с., которая возникает в цепи веберметра при изменении по-

тока, сцепляющегося с витками измерительной катушкой, подключенной к зажимам веберметра. Эта э.д.с. определяется выражением (**):

Интегрируя это выражение за время движения подвижной части (от 0 до t) и учи-

тывая, что в момент времени 0 и t подвижная часть находится в состоянии покоя, получаем

P2 Da==DФхwк.

окончательно получим

где Сф – постоянная веберметра, обычно выражаемая в веберах на деление.

Показания веберметра не зависят от времени магнитного потока (как это имело место в баллистическом гальванометре) и в некоторых пределах не зависит от соп-

ротивления внешней цепи (если оно достаточно мало). Так как противодействую-

щий момент прибора равен нулю, то его указатель может занимать произвольное по-

ложение. При определении магнитного потока DFх берут разность показаний прибо-

ра Da=a2-a1, где a2 – конечное показание, a2 – начальное показание.

Для установления указателя на нулевую либо другую удобную отметку шкалы (например, ею иногда может быть средняя отметка) в приборе используют электри-

ческий корректор. Он представляет собой катушку, расположенную в поле постоян-

ного магнита. Если соеденить эту катушку с рамкой веберметра и изменить поток, сцепляющийся с витками катушки (путем поворота катушки или магнита), то рамка веберметра отклонится; регулируя положение катушки или магнита, устанавливают указатель прибора в нужное положение.

Баллистический гальванометр превосходит магнитоэлектрический веберметр по чувствительности и позволяет изменять магнитные величины с большей точностью, но является прибором неградуированным и требует определения постоянной по маг-

нитному потоку Сф в каждом конкретном случае.

Веберметр является переносным прибором, шкала его отградуирована в единицах магнитного потока, он прост и удобен в работе, его показания в довольно широких пределах не зависят от сопротивления цепи и времени изменения потокосцепления.

Основными недостатками его являются относительно низкая чувствительность и малая точность.

В значительной мере лишен этих недостатков фотогальванометрический веберметр (ФЭВ).Упрощенная принципиальная схема ФЭВ, поясняющаяпринцип его действия, приведена на рис.5.

Работает схема следующим образом. Разность э.д.с. ех, возникающей на зажимах измерительной катушки ИК при изменении потокосцепления, и э.д.с. ео.с. обратной связи создает ток i, протекающий через обмотку рамки гальванометра Г с миниатюр

ным зеркальцем на подвижной части. Отклонение подвижной части гальванометра под действием тока i вызывает перемещение светового пятна по последовательно включенным фотосопротивлениям ФС1 и ФС2, в результате чего на входе усилите-

ля У появится сигнал и выходной ток I усилителя скомпенсирует ех через отрицате-

льную обратную связь при помощи катушки взаимной индуктивности М. Считая в приближении ех»ео.с. (предпологаем, что применен гальванометр высокой чувствите-льности к напряжению, и неучитываем э.д.с., индуктированную в рамке гальвано-

метра при ее движении), получим

т.е. по току I можно судить о потоке Фх.

Ток I можно измерить магнитоэлектрическим прибором, а при необходимости за-

писать самопишущим прибором или осциллографом. Теоретические и эксперимен-

тальные исследования компенсационного фотоэлектрического веберметра подтверж-

Лабораторная работа № 6

ИЗМЕРЕНИЯ БАЛЛИСТИЧЕСКИМ ГАЛЬВАНОМЕТРОМ

Часть I

ОПРЕДЕЛЕНИЕ ЕМКОСТИ КОНДЕНСАТОРА
БАЛЛИСТИЧЕСКИМ МЕТОДОМ

ЦЕЛЬ РАБОТЫ:

  1. Приобрести практические навыки работы с баллистическим гальванометром. Овладеть методикой градуировки гальванометра.
  2. Овладеть методикой определения емкости конденсатора посредством баллистического гальванометра.

ПРИБОРЫ:

  1. Гальванометр М 17/11 1 .
  2. Набор конденсаторов.
  3. Ключи.
  4. Источник стабилизированного напряжения ИЭПП.

5. Вольтметр.

Измерение емкости конденсатора может быть произведено несколькими принципиально различными способами.

В данной работе в основе измерения емкостей лежит соотношение между зарядом конденсатора, его емкостью С и разностью потенциалов  . Для двух конденсаторов, заряженных до одной и той же разности потенциалов, получаем соотношение:

Следовательно, если значение С 1 известно, то, определив q 1 и q 2 , можно вычислить неизвестную емкость С 2 . Такой способ относительных измерений емкости положен в основу настоящей лабораторной работы. Наиболее ответственной частью задачи является измерение величины заряда q или сравнение зарядов двух конденсаторов. В настоящей работе сравнение зарядов двух конденсаторов выполняется баллистическим методом, изучению которого отводится центральное место.

ТЕОРИЯ БАЛЛИСТИЧЕСКОГО ГАЛЬВАНОМЕТРА

Гальванометр, предназначенный для измерения небольшого количества электричества, протекающего по цепи за промежуток времени, малый по сравнению с периодом собственных колебаний рамки гальванометра, называется баллистическим. Он представляет собой особую разновидность гальванометра магнитоэлектрической системы. От обычного зеркального баллистический гальванометр отличается большим моментом инерции подвижной системы. Увеличение момента инерции подвижной системы приводит к увеличению собственного периода ее колебаний. Кратковременный ток сообщает подвижной системе толчок (удар – отсюда и название баллистический), который служит причиной возникновения крутильных колебаний системы. Чтобы колебания носили характер свободных колебаний, необходимо, чтобы время действия тока на катушку было меньше собственного периода колебаний. Покажем, что при этом условии величина первого отклонения подвижной системы пропорциональна количеству прошедшего через катушку электричества .

За время протекания тока, которое очень мало, противодействующий момент закрученной нити можно считать равным нулю, т.к. система не успевает при большом моменте инерции сдвинуться с места. Следовательно, можно считать, что подвижная система в течение этого времени будет находиться только под действием вращающего момента М, обусловленного взаимодействием тока и магнитного поля постоянного магнита. Известно, что импульс момента силы равен изменению момента количества движения, т.е.:

М 1 dt = Id  (1),

где М 1 – мгновенное значение вращающего момента, действующего на подвижную систему гальванометра; I – момент инерции подвижной системы гальванометра относительно оси ее вращения; d - изменение угловой скорости системы за время dt.

На рамку, обтекаемую током и помещенную в магнитное поле, действует пара сил, вращающий момент которой М 1 определяется по формуле:

M 1 = B n i sin  S (2),

где В – индукция магнитного поля постоянного магнита,

n – число витков рамки,

S – площадь витка,

- угол между нормалью к плоскости рамки и направлением вектора.

i – мгновенная сила тока.

Так как линии индукции магнитного поля, в котором вращается рамка прибора данной системы, составляют с нормалью к плоскости рамки угол  = 90 о при всех положениях рамки, то вращающий момент М 1 не будет зависеть от положения рамки и будет иметь наибольшее значение, равное:

М 1 = B n S i (2  ).

Подставим М 1 из (2  ) в (1), получим:

B n S i d t = I d  (3).

Интегрируя обе части выражения (3), будем иметь:

B n S (4) ,

где t - время, в течение которого ток протекал через катушку.

Учитывая, что:

где q – количество электричества, протекающего за время t, будем иметь:

B n S q = I  t .

Отсюда получим:

где  t – угловая скорость, которую приобретает подвижная система к моменту прекращения тока.

Обозначив через К 1 (постоянную данного прибора), получим:

 t = k 1 q.

Кинетическая энергия, полученная системой в результате действия тока, м о жет быть найдена по формуле:

(5).

Подставив в (5)выражение  t = k 1 q, получим:

(5  а).

Вращение катушки будет продолжаться до тех пор, пока вся кинетическая энергия системы не перейдет в потенциальную энергию закрученной нити подвеса. В этот момент подвижная система остановится, повернувшись на угол  max .

Рассчитаем потенциальную энергию закрученной нити подвеса. Противодействующий момент М 2 , создаваемый нитью при закручивании на угол  , будет равен:

М 2 = к 2  . (6),

где к 2 – коэффициент, зависящий от упругих свойств нити подвеса.

Элементарная работа, затраченная на закручивание нити на угол  , равна:

dА = М 2 d  .

Полная работа, затраченная на закручивание нити на угол  max , с учётом

(6), равна:

(7).

Очевидно, (7) является выражением потенциальной энергии закрученной нити подвеса подвижной системы прибора.

Приравнивая (5  ) и (7), получим:

Откуда имеем:

Обозначив

(8),

получим:

q = К  max (9).

Таким образом, мы доказали, что величина первого угла отклонения подвижной системы прибора пропорциональна количеству электричества, прошедшего через гальванометр.

Нетрудно показать, что угловое смещение прибора (для малых углов),

(10),

где n – число делений, на которое отклонился световой указатель – «зайчик» по шкале гальванометра, D – расстояние от зеркала до шкалы.

Следовательно, выражение (9) можно переписать:

(11).

Величина называется баллистической постоянной гальванометра, она обычно выражается в кулонах или микрокулонах на деление шкалы (обычно на мм). С учетом К б выражение (11) примет вид:

q = K б n max (12).

Таким образом, величина наибольшего отклонения светового указателя по шкале (отброс) пропорциональна количеству электричества, прошедшего через гальванометр.

Выражение (12) не совсем точное, т.к. при выводе его не учитывалось, что кинетическая энергия, полученная от импульса тока, частично тратится на преодоление сопротивления воздуха. Однако практически это соотношение дает хорошие результаты.

Чтобы быстрее успокоить крутильные колебания подвижной системы, часто параллельно обмотке катушки, вводят небольшое сопротивление и ключ. Если ключ замкнуть в тот момент, когда световой указатель проходит через нуль шкалы, то колебания прекратятся. Это происходит потому, что в катушке, вращающейся в магнитном поле постоянного магнита, возникает ЭДС индукции. При замыкании ключа возникает индукционный ток, который, согласно правилу Ленца, будет противодействовать движению катушки.

Во многих гальванометрах параллельно подвижной системе подключают сопротивление без ключа (шунт). Это сопротивление рассчитано так, чтобы сделать движение подвижной системы апериодическим. Такое сопротивление называется критическим, оно порядка нескольких тысяч омов, подключение критического сопротивления понижает чувствительность гальванометра.

МЕТОДИКА ИЗМЕРЕНИЙ

I . Определение баллистической постоянной гальванометра

Из выражения (12) имеем:

К б = (13),

где К б – величина баллистической постоянной,

q – величина заряда, протекающего через гальванометр,

n max – наибольшее отклонение светового указателя по шкале.

1.Для определения К б собрать схему по рис. 1,

Рис.1.

где Г – баллистический гальванометр;

R ш – шунт гальванометра;

К 0 – ключ, отключающий гальванометр;

К – ключ, закорачивающий гальванометр;

К 1 – двухпозиционный ключ (рубильник);

V – вольтметр;

С - конденсатор (сначала с известной емкостью, затем - неизвестной);

Источник регулируемого напряжения ИЭПП.

Согласно инструкции для пользования гальванометром и отсчетным горизонтальным приспособлением, подготовить гальванометр к работе и установить световой указатель на нуль шкалы. Ключ К разомкнуть, ключ К 0 замкнуть.

Передвигая линзу осветителя, добиться четких очертаний «зайчика».

2. Рубильник К 1 замкнуть на клеммы 1 и 2, подать с делителя ИЭПП на конденсатор С 0 известной емкости (1мкФ) напряжение (разность потенциалов) U = 0,2 В – 0,5 В.

3. Перекинуть рубильник К 1 на клеммы 5 и 6, разрядить конденсатор через гальванометр. Заметить крайнее значение шкалы, до которого доходит световой указатель при первом колебании (первый отброс). Если этот отброс находится в пределах шкалы, то можно приступать к измерениям. Если зайчик уходит за пределы шкалы, уменьшить напряжение.

Отсчитав n max (значение первого отброса), для успокоения гальванометра замкнуть ключ К, тогда «зайчик» возвращается к нулевому делению шкалы. Когда «зайчик» установится на нуле шкалы, разомкнуть ключ К.

4. Вычислив q = C 0 U и измерив по шкале величину первого отброса n max , по формуле (13  ) вычислить баллистическую постоянную:

(13  ).

Определение n max произвести не менее пяти раз, записывая в таблицу каждый раз величину наибольшего отброса “зайчика” и повторяя операции согласно пунктам 1, 2. Следить при этом, чтобы напряжение на конденсатор подавалось одно и тоже. Результаты измерений и расчетов внести в табл. I .Найти среднее значение n max и по нему вычислить К б .

Погрешности  K б и определить по формулам погрешностей, полученным из формулы 13  .  n max определить как среднюю квадратичную погрешность среднего арифметического; U – погрешность прибора, определяемая исходя из класса точности прибора;  С 0 – погрешность, определяемая по относительной погрешности, указанной в маркировке конденсатора.

Вывод формул погрешностей и расчеты представить в отчете.

5. Сравнить результаты измерения К б . с паспортными данными гальванометра, объяснить результаты сравнения.

Таблица I

n max

(дел)

 n max

(дел.)

(В)

 U

(В)

( )

 C 0

( )

K б

(Кл/

дел.)

 K б

(Кл/

дел.)

ср.

II .Измерение емкости конденсатора и проверка формул для
подсчета емкости батарей конденсаторов

1.Заменить конденсатор известной емкости первым испытуемым конденсатором неизвестной емкости С 1 . Установить на выходе ИЭПП напряжение U 1 = 1 В-2 В, ключ К 1 замкнуть на клеммы 1 и 2. Затем перекинуть ключ К 1 на клеммы 5 и 6, разряжая конденсатор через гальванометр. Записать величину отброса «зайчика» на шкале. Замыкая ключ К, когда «зайчик» проходит через нуль шкалы, успокоить катушку гальванометра. Затем разомкнуть ключ К.

2.Заменить конденсатор С 1 другим испытуемым конденсатором неизвестной емкости С 2 , повторить с ним все операции пункта 1,подав напряжение на конденсатор U 2 = 2В-3В.

3.Опыты по определению n mах произвести для каждого конденсатора не менее 5 раз, получить среднее значение n mах .

4.Так как, а, то неизвестную емкость найти по формуле:

(14),

где С – определяемая емкость, n mах – среднее значение отбросов “зайчика” на шкале, U – постоянное напряжение для каждого конденсатора.

Погрешности  С и определить по формулам погрешностей, полученным из формулы (14). Результаты измерений и расчетов внести в табл. II и подобную ей табл. III.

Таблица II. (III)

n max

(дел.)

 n max

(дел.)

(В)

 U

(В)

(Ф)

 C

(Ф)

ср.

5.Измерить емкость батарей, составленных из конденсаторов С 1 и С 2 при их последовательном и параллельном соединениях, проделав все операции, содержащиеся в пунктах 1, 2, 3, 4. Результаты измерений и расчетов внести в табл. IV для последовательного соединения, в табл. V – для параллельного.

Таблица IV. (V).

n max

(дел.)

 n max

(дел.)

(В)

 U

(В)

(Ф)

(Ф)

(Ф)

ср.

Сравнить результаты измерений емкости при последовательном и параллельном соединении конденсаторов с результатами вычислений этих емкостей по формулам последовательного и параллельного соединения конденсаторов.

После выполнения работы ключ К 0 оставить разомкнутым

КОНТРОЛЬНЫЕ ВОПРОСЫ К I ЧАСТИ РАБОТЫ.

1. Охарактеризуйте метод, использованный в работе, для определения емкости конденсатора.

2.В каких единицах измеряется электроемкость в СИ и СГС?. Дайте определения этих единиц и выведете соотношение между ними.

3.От каких величин зависит емкость плоского, сферического, цилиндрического конденсатора? Знать формулы емкости этих конденсаторов.

4.Что понимают под емкостью проводника, конденсатора?

5.Объясните устройство и принцип действия баллистического гальванометра.

6.Каков физический смысл баллистической постоянной?

Часть II

ИЗМЕРЕНИЕ ПОТОКА МАГНИТНОЙ ИНДУКЦИИ

БАЛЛИСТИЧЕСКИМ МЕТОДОМ

ЦЕЛЬ РАБОТЫ:

1) Овладеть методикой измерения величины потока магнитной индукции и индукции баллистическим методом.

  1. Определить постоянную гальванометра по магнитному потоку.

Определить индукцию магнитного поля в измерительной катушке при внесении в нее полосового магнита.

ПРИБОРЫ:

1.гальванометр М 17/11,

2.дроссельная катушка,

3.магазин Р 33,

4.полосовой магнит,

5.ключи

ТЕОРИЯ

Одним из основных методов определения магнитных характеристик ферромагнитных материалов в постоянных магнитных полях является баллистический. Впервые он был применен А.Г. Столетовым для измерения намагничивания железа. Баллистический метод основан на измерении количества электричества, которое возникает в измерительной катушке, охватывающий магнитный образец, в результате быстрого изменения магнитного потока через эту катушку. Это же количество электричества проходит и через рамку гальванометра.

В первой части работы была определена баллистическая постоянная гальванометра К б . Ее значением и воспользуемся для определения количества электричества, проходящего в цепи гальванометра при изменении магнитного потока через измерительную катушку. Изменение магнитного потока произведем введением (или выведением) полосового магнита в измерительную катушку.

При изменении магнитного потока через измерительную катушку в ней возникает электродвижущая сила индукции

(1),

где N - число витков измерительной катушки.

В цепи гальванометра пойдет ток

(2),

где R - общее сопротивление катушки и цепи гальванометра.

Если поток изменится на величину  , через рамку гальванометра про й дет количество электричества

(3).

Это количество электричества измерим по отклонению n указателя гал ь ван о метра по шкале

q = К б  n (4).

Тогда поток магнитной индукции определим по формуле (5)

(5).

Зная величину площади, охватываемой витками измерительной катушки, найдем величину вектора магнитной индукции

(6),

где В n =В cos  ,  - угол между нормалью к плоскости витка и направлением вектора магнитной индукции.

МЕТОДИКА ИЗМЕРЕНИЙ

1.Собрать цепь по схеме, изображенной на рис.2,

Рис.2

где Г – гальванометр, сопротивление рамки которого R 0г =300 Ом (паспортные данные);

R ш – шунт, сопротивление которого в I и II части работы одинаковое, равное 650 Ом; (измерено омметром М 371);

R кр – критическое сопротивление для данного гальванометра и данной цепи, равное 400 Ом (набрано на магазине сопротивлений Р-33);

L – измерительная катушка, число витков которой N=15, омическое сопротивление R L =3,2 Ом (определено омметром М-371), площадь витка S=100 см 2 ;

Назначение ключей К 0, К, К 1 указано в I части работы.

  1. Замкнуть ключ К 0 . Внутрь дроссельной катушки ввести вертикально полосовой магнит. Замкнуть ключ К 1 на клеммы 1 - 2. Отметить начальное положение светового указателя n 1 .

Резко вынуть магнит из катушки. Зарегистрировать новое положение указателя n 2 , найти n=n 2 -n 1 . Произвести измерения 5 раз, найти n ср. . Погрешность в определении n ср найти как среднее квадратичное отклонение.

По формуле (5) найти изменение магнитного потока, пронизывающего измерительную катушку, при введении (или выведении) полосового магнита. При этом нужно иметь в виду, что R в формуле (5) - полное сопротивление цепи, состоящей из измерительной катушки, рамки гальванометра, шунта и критического сопротивления. По формуле (6) найти величину вектора магнитной индукции.

Погрешность в определении магнитного потока найти по формулам погрешностей, полученным из формул (5) и (6).

  1. Определить постоянную гальванометра по магнитному потоку К ф . Как видно из (5),

(6).

Погрешность в определении постоянной гальванометра по магнитному потоку определить по формуле погрешности, полученной из формулы (6).

  1. Результаты измерений и расчетов внести в табл. 6.

Сравнить результаты измерения К Ф. с паспортными данными гальванометра, объяснить результаты сравнения.

КОНТРОЛЬНЫЕ ВОПРОСЫ КО II ЧАСТИ РАБОТЫ.

  1. Охарактеризуйте метод, использованный в работе, для определения потока магнитной индукции.
  2. Влияет ли на показания прибора изменение положения магнита в катушке (северным полюсом вниз или вверх)?
  3. Влияет ли на показания прибора скорость движения магнита относительно катушки? Почему?
  4. В паспорте к гальванометру М 17/11 указаны значения постоянных прибора (К б , К ф и т.д.) для расстояния между осветителем и зеркалом прибора, равного 1м.

Каково это расстояние в нашей установке? Как влияет величина этого рассто я ния на значения постоянных прибора?

Таблица 6


п/п

 n

 R

К б

 К б

 Ф

К ф

 К ф

 S

В n

 B n

мм

мм

Ом

Ом

Кл/мм

Кл/мм

Вб

Вб

Вб/мм

Вб/мм

м 2

м 2

Тл

Тл

ср.

Приложение

Устройство гальванометра магнитоэлектрической системы

Гальванометры – приборы, служащие для измерения слабых электрических токов, подразделяются по своей конструкции на две основные группы: 1) с подвижной катушкой, обтекаемой током и вращающейся в поле неподвижного магнита или электромагнита; 2) с подвижным магнитом и неподвижной катушкой.

Для измерения силы тока, как в тех, так и в других приборах, используется вращение подвижной системы, отклоняющейся от некоторого положения равновесия под влиянием взаимодействия тока и магнита. При точных измерениях применяются исключительно гальванометры первого типа.

Подвижная система такого гальванометра представляет собой в большинстве случаев четырехугольную рамку, составленную из плотно уложенных и склеенных изолирующим лаком четырехугольных витков изолированной тонкой проволоки сечением в несколько сотых миллиметра. Эффективное поперечное сечение такой катушки, пронизываемое линиями сил магнитного поля, составляет nS, где n – число витков рамки, а S – площадь сечения отдельного прямоугольного витка проволоки. Число витков в такой катушке бывает от нескольких десятков до сотни. Нить Е с укрепленным на ней легким зеркальцем М (рис. 3) служит подвесом для рамки С. Рамка может свободно вращаться в зазоре, образуемом двумя полюсами постоянного магнита и цилиндром J из мягкого железа, укрепленных на пластинке Р из немагнитного материала. В этом случае, как показано пунктиром в нижней части рисунка, магнитное поле в воздушном промежутке почти радиально (на верхней части рисунка один из полюсов магнита частично удален).

Нитью подвеса служит тонкая металлическая (платиновая) проволока или бронзовая ленточка сечением в несколько микрон или тонкая кварцевая нить, иногда платинированная по поверхности. Вторым подводом тока к катушке служит обычно металлическая серебряная или золотая ленточка толщиной в несколько десятых микрона. В гальванометрах с кварцевым подвесом обычно оба подвода тока к рамке выполняются в виде таких ленточек, соединенных с обмоткой рамки (катушки) гальванометра в нижней ее части. Подводы тока к подвижной системе гальванометра не должны оказывать упругого сопротивления вращению подвижной системы. Таким образом, моментом упругих сил, действующим на рамку, является только крутящий момент нити подвеса.

Рис.3.

Перед началом работы гальванометр должен быть правильно установлен, что достигается вращением трех установочных винтов, на которые опирается корпус прибора. Это значит, что подвижная система гальванометра, удерживаемая в фиксированном положении до начала работы специальным приспособлением (арретиром), должна после освобождения арретира свободно двигаться между полюсами магнита, не касаясь их при вращении. Узость зазора между полюсами магнита и центральным цилиндром требует весьма точной установки прибора.

Для правильной установки некоторые системы гальванометров снабжены уровнем, при помощи которого прибор приводится в правильное положение. В других системах гальванометров в корпусе прибора установлено специальное наклеенное зеркальце, которое облегчает наблюдения положения рамки относительно полюсов магнита.

Приборы первого типа устанавливаются по уровню при арретированной подвижной системе. Приборы второго типа устанавливаются при освобожденной подвижной системе. Арретир приводится в движение специальным рычажком или головкой винта, выведенной где-либо из гальванометра и снабженной надписью.

Освобождение и закрепление подвижной системы гальванометра перед работой прибора (или по окончании ее) следует производить с большой осторожностью, так как толчки подвижной системы гальванометра, подхватываемой вилкой арретира, передаются непосредственно тонкой нити подвеса. Студентам выполнять самостоятельно эту операцию в практикуме не рекомендуется, они должны обращаться за помощью к лаборантам практикума и воспользоваться возможностью проследить за выполнением этих операций опытными лицами.

Верхний конец нити подвеса закреплен во вращающейся головке (обозначенной на корпусе прибора надписью «корректор нуля»), выведенной на верхнюю часть корпуса гальванометра. Вращением этой головки можно поворачивать подвижную систему гальванометра для установки ее в нулевое положение между полюсами магнита. В нулевом положении плоскость витков подвижной системы подвеса устанавливается приблизительно параллельно линии аb (рис.3). Операция поворота рамки (катушки) гальванометра требует таких же предосторожностей, что и освобождение арретира прибора. Необходимо при этом иметь в виду, что при вращении головки корректора нуля рамка следует за вращением головки с запозданием, так как передача крутящего момента к рамке осуществляется через нить подвеса. Поэтому, повернув корректор нуля на небольшой угол, следует всякий раз выждать, пока подвижная система прибора установится в новое положение. Только таким прерывистым вращением корректора нуля можно привести подвижную систему в нужное положение между полюсами магнита. В практикуме эти операции производятся также не студентами, а лаборантами.

Измерение силы тока основано на наблюдении углов поворота рамки С. При протекании через обмотку рамки тока последняя испытывает вращающий момент сил, действующих на ток в магнитном поле. При этом рамка стремится расположиться так, чтобы магнитный момент протекающего по ней тока был направлен вдоль внешнего магнитного поля. В итоге рамка поворачивается на некоторый угол  . Режимы движения рамки гальванометра следующие:

  1. Апериодический режим. Это такой режим, при котором рамка гальванометра под действием тока плавно подходит к положению равновесия, не переходя через него.
  2. Периодический режим . Движение рамки в этом случае происходит так, что двигаясь к положению равновесия, она переходит через него и занимает его после нескольких колебаний.
  3. Критический режим . Это такой режим, при котором рамка гальванометра под действием тока подходит к положению равновесия за кратчайшее время. Этот режим наиболее выгоден для работы. Параметры элементов схемы, необходимые для реализации критического режима, приведены в паспорте гальванометра.

1 Устройство гальванометра описано в «Приложении» к лабораторной работе. Параметры М 17/11 указаны в инструкции к прибору, с которой студент должен ознакомиться.

ЛАБОРАТОРНАЯ РАБОТА № 2

ОПРЕДЕЛЕНИЕ ЕМКОСТИ КОНДЕНСАТОРА БАЛЛИСТИЧЕСКИМ ГАЛЬВАНОМЕТРОМ

1. Введение

Цель работы – ознакомление с баллистическим методом определения емкости конденсатора. Работа состоит из двух частей. В первой части находят величину баллистической постоянной гальванометра, во второй – определяют емкости двух конденсаторов и емкости этих конденсаторов, соединенных. параллельно и последовательно.

Емкость конденсатора равна отношению заряда q на конденсаторе к разности потенциалов между его обкладками

https://pandia.ru/text/78/409/images/image003_10.png" width="81" height="23 src=">. (2)

При последовательном соединении

Заряд конденсатора измеряют с помощью баллистического гальванометра. Баллистический метод является одним из приемов не только электрических, но и магнитных измерений. Баллистический гальванометр относится к приборам магнито-электрической системы, схематичное устройство которых показано на рис. 1. Между полюсами постоянного магнита NS для создания -радиального магнитного поля помещен стальной цилиндр В . Цилиндр закреплен неподвижно. В зазоре между полюсами магнита и цилиндром может свободно вращаться рамка К с обмоткой из тонкой проволоки, подвешенная на металлической или кварцевой нити М . Для отсчета углов поворота рамки служит зеркальце А , на которое падает световой луч от осветительного устройства. Баллистический гальванометр служит для измерения заряда, длительность t протекания которого по цепи мала по сравнению с периодом Т собственных колебаний рамки. Баллистический гальванометр отличается от обычных зеркальных гальванометров увеличенным значением момента инерции I его подвижной системы. Если через гальванометр пропустить кратковременный импульс тока (t<<T ), то на рамку в каждый момент времени действует вращающий момент, обусловленный взаимодействием тока i с магнитным полем: https://pandia.ru/text/78/409/images/image007_6.png" width="37" height="45">. Так как ток к этому моменту прекратился, то рамка начинает поворачиваться по инерции с начальной скоростью w0 и закручивает нить. В момент остановки рамки вся кинетическая энергия переходит в потенциальную энергию закрученной нити , где D - постоянная кручения нити; j – максимальный угол отклонения рамки:

Угловую скорость w0, ..png" width="65" height="41 src=">.

Произведем интегрирование:

так как https://pandia.ru/text/78/409/images/image015_4.png" width="61" height="24 src=">, (5)

где q – заряд, прошедший через рамку за время t. Решая совместно уравнения (4) и (5), будем иметь . На опыте измеряют отклонение светового «зайчика» (отброс) не в углах, а в делениях шкалы n . Поскольку n и j пропорциональны друг другу, то окончательно можем записать

q = Bn , (6)

где В – коэффициент пропорциональности, который называется баллистической постоянной гальванометра. Баллистическая постоянная численно равна величине заряда, вызывающего отклонение «зайчика» на одно деление шкалы. Любой гальванометр может служить в качестве баллистического, если выполнено условие t << T . Итак, зная баллистическую постоянную гальванометра В , отброс n при разряде конденсатора и показания вольтметра U , в соответствии с формулами (1) и (6) находят емкость

Зарядные устройства" href="/text/category/zaryadnie_ustrojstva/" rel="bookmark">блок питания , Г – баллистический гальванометр, В – вольтметр, К – двойной переключатель. В положении I переключателя К конденсатор С заряжается; при переводе переключателя в положение II конденсатор разряжается через гальванометр. В этот момент измеряют максимальное отклонение «зайчика» n по шкале.

В первой части работы для определения баллистической постоянной в цепь (рис. 2) включают конденсатор известной емкости – эталон С э. Заряжая эталонный конденсатор до определенной разности потенциалов U , а затем разряжая его на гальванометр, измеряют отклонение «зайчика» n . Так как заряд на конденсаторе равен q = C эU , то по формуле (6) можно вычислить баллистическую постоянную

0 " style="border-collapse:collapse;border:none">

n, дел

q , мкКл

В , мкКл/дел

Вср , мкКл/дел

1. Вычисляют В для каждого U пo формуле (8), находят среднее значение В . Строят график зависимости q от n и убеждаются в том, что эта зависимость линейна.

2. Выводят формулу погрешности величины В по правилам расчета погрешности косвенных измерений. Вычисляют DB /В для: наименьшего значения U по данным табл. 1.

Определение емкостей неизвестных конденсаторов и их соединений

Таблица 2

n, дел

С , мкФ

Сср , мкФ

Конденсатор С 1

Конденсатор С 2

Параллельн. соед. С"

Последоват. соед. С""

3. Вычисляют емкости конденсаторов С 1, С 2, С" и С" по формуле (7).

4. Находят по формулам (2) и (3) теоретические значения емкостей конденсаторов С" теор и С" теор и сравнивают с опытными С" и С" .

5. Выводят формулу погрешности DС /С для емкости, найденной экспериментально (формула 7). Рассчитывают DС 1/С 1, DС 2/С 2, DС" /С" , DС" /С" для одного из значений U (DВ /В берут из п. 2). Определяют абсолютные погрешности и записывают окончательный результат для каждой емкости.

6. Находят разность значений емкости при параллельном (или последовательном) соединении, полученных экспериментально и теоретически. Сравнивают (С" С" теор) с погрешностью этой разности D( С" С" теор) и убеждаются в том, что С" С" теор £. D( С" С" теор). Значения С 1 С 2 и С" берут из табл. 2 при одной разности потенциалов U .

7. Дополнительное задание. Предлагается продумать и проверить экспериментально метод определения емкости конденсатора с использованием эталонного конденсатора, но без предварительного измерения баллистической постоянной.

ЛИТЕРАТУРА

1. , Курс физики. – М.: Высш. школа, 1999, § 16.2, 16.3.