Исследование логических элементов. Исследование логических элементов и синтез логических схем Основные теоретические положения

1. Цель работы

Целью работы является:

Теоретическое изучение логических элементов, реализующих элементарные функции алгебры логики (ФАЛ);

Экспериментальное исследование логических элементов, построенных на отечественных микросхемах серии К155.

2. Основные теоретические положения.

2.1. Математической основой цифровой электроники и вычислительной техники является алгебра логики или булева алгебра (по имени английского математика Джона Буля).

В булевой алгебре независимые переменные или аргументы (X) принимают только два значения: 0 или 1. Зависимые переменные или функции (Y) также могут принимать только одно из двух значений: 0 или 1. Функция алгебры логики (ФАЛ) представляется в виде:

Y = F (X 1 ; X 2 ; X 3 ... X N).

Данная форма задания ФАЛ называется алгебраической.

2.2. Основными логическими функциями являются:

Логическое отрицание (инверсия)

Логическое сложение (дизьюнкция)

Y = X 1 + X 2 или Y = X 1 V X 2 ;

Логическое умножение (коньюнкция)

Y = X 1 · X 2 или Y = X 1 L X 2 .

К более сложным функциям алгебры логики относятся:

Функция равнозначности (эквивалентности)

Y = X 1 · X 2 + или Y = X 1 ~ X 2 ;

Функция неравнозначности (сложение по модулю два)

Y = X 1 · + · X 2 или Y = X 1 X 2 ;

Функция Пирса (логическое сложение с отрицанием)

Функция Шеффера (логическое умножение с отрицанием)

2.3. Для булевой алгебры справедливы следующие законы и правила:

Распределительный закон

X 1 (X 2 + X 3) = X 1 · X 2 + X 1 · X 3 ,

X 1 + X 2 · X 3 = (X 1 + X 2) (X 1 + X 3) ;

Правило повторения

X · X = X , X + X = X ;

Правило отрицания

X · = 0 , X + = 1 ;

Теорема де Моргана

Тождества

X · 1 = X , X + 0 = X , X · 0 = 0 , X + 1 = 1.

2.4. Схемы, реализующие логические функции, называются логическими элементами. Основные логические элементы имеют, как правило, один выход (Y) и несколько входов, число которых равно числу аргументов (X 1 ;X 2 ;X 3 ... X N). На электрических схемах логические элементы обозначаются в виде прямоугольников с выводами для входных (слева) и выходных (справа) переменных. Внутри прямоугольника изображается символ, указывающий функциональное назначение элемента.

На рис.1 ¸ 10 представлены логические элементы, реализующие рассмотренные в п.2.2. функции. Там же представлены так называемые таблицы состояний или таблицы истинности, описывающие соответствующие логические функции в двоичном коде в виде состояний входных и выходных переменных. Таблица истинности является также табличным способом задания ФАЛ.

На рис.1 представлен элемент “НЕ”, реализующий функцию логического отрицания Y = .

Элемент “ИЛИ” (рис.2) и элемент “И” (рис.3) реализуют функции логического сложения и логического умножения соответственно.

Функции Пирса и функции Шеффера реализуются с помощью элементов “ИЛИ-НЕ” и “И-НЕ”, представленных на рис.4 и рис. 5 соответственно.

Элемент Пирса можно представить в виде последовательного соединения элемента “ИЛИ” и элемента “НЕ” (рис.6), а элемент Шеффера - в виде последовательного соединения элемента “И” и элемента “НЕ” (рис.7).

На рис.8 и рис.9 представлены элементы “Исключающее ИЛИ” и “Исключающее ИЛИ - НЕ”, реализующие функции неравнозначности и неравнозначности с отрицанием соответственно.

2.5. Логические элементы, реализующие операции коньюнкции, дизьюнкции, функции Пирса и Шеффера, могут быть, в общем случае, n - входовые. Так, например, логический элемент с тремя входами, реализующий функцию Пирса, имеет вид, представленный на рис.10.

В таблице истинности (рис.10) в отличие от таблиц в п.2.4. имеется восемь значений выходной переменной Y. Это количество определяется числом возможных комбинаций входных переменных N, которое, в общем случае, равно: N = 2 n , где n - число входных переменных.

2.6. Логические элементы используются для построения интегральных микросхем, выполняющих различные логические и арифметические операции и имеющих различное функциональное назначение. Микросхемы типа К155ЛН1 и К155ЛА3, например, имеют в своем составе шесть инверторов и четыре элемента Шеффера соответственно (рис.11), а микросхема К155ЛР1 содержит элементы разного вида (рис.12).

2.7. ФАЛ любой сложности можно реализовать с помощью указанных логических элементов. В качестве примера рассмотрим ФАЛ, заданную в алгебраической форме, в виде:

Упростим данную ФАЛ, используя вышеприведенные правила. Получим:

(2)

Проведенная операция носит название минимизации ФАЛ и служит для облегчения процедуры построения функциональной схемы соответствующего цифрового устройства.

Функциональная схема утройства, реализующая рассматриваемую ФАЛ, представлена на рис.13.

Следует отметить, что полученная после преобразований функция (2) не является полностью минимизированной. Полная минимизация функции проводится в процессе выполнения лабораторной работы.

3. Описание обьекта и средств исследования

Исследуемое в лабораторной работе устройство представлено на рис.14.

3.1. Устройство представляет собой группу логических элементов, выполненных на микросхемах серии К155 (элементы ДД1¸ДД4).

Для микросхем данной серии логической единице соответствует напряжение U 1 = (2,4 ¸ 5,0) B, а логическому нулю - U 0 = (0 ¸ 0,8) В.

3.2. Логические “0” и “1” на входе элементов задаются с помощью кнопок, расположенных на передней панели блока К32 под надписью “Программатор кодов”. Номера кнопок на панели соответствуют номерам на схеме устройства.

Полное графическое изображение кнопок данного типа (так называемых “кнопок с фиксацией”) показано только для кнопки SA1.

При нажатой кнопке вход элементов через резистор R1 подключается к источнику с напряжением 5В. При этом на входе элементов будет действовать напряжение U 1 , что соотвествует подаче на вывод микросхемы логической единицы. При отжатой кнопке вход элемента будет соединен с шиной, находящейся под потенциалом земли, что соответствует подаче на вывод микросхемы логического нуля U 0 .

3.3. Логические сигналы с выводов элементов ДД1 ¸ ДД4 поступают на цифровые индикаторы и индуцируются в виде символов “0” и “1”. Цифровые индикаторы расположены в блоке К32 слева (кнопка “IO 2”) под индикаторами должна находиться в нажатом состоянии.

3.4. Сигнал с выхода элемента ДД5 через цепи коммутации подается на вход мультиметра Н3014. Предварительно мультиметр устанавливается в режим измерения постоянного напряжения “-V” и выпорлняются следующие подсоединения:

3.4.1. Вход - гнездо мультиметра “-V” - кабелем соединяется с гнездом “Выход V ~“ блока К32.

3.4.2. Гнездо XS1 на плате устройства проводником соединяется с левым гнездом под надписью “Вход 1” в поле надписи “Коммутатор”.

3.4.3. Кнопка “ВСВ ВНК” над указанным выше гнездом должна находиться в нажатом состоянии.

3.4.4. Кнопка “ВХ 1” под надписью “Контроль V ~“ должна находиться в нажатом, а кнопка “ВСВ ВНК” в поле надписи “КВУ” - в отжатом состоянии.

4.1. Исследование особенностей функционирования логических элементов ДД1 ¸ ДД4 и определение их функционального назначения.

4.1.1. Задавая различные комбинации входных логических сигналов, определить значение выходного сигнала и по результатам измерений заполнить таблицы истинности для каждого элемента ДД1 ¸ ДД4 (таблица 1 или таблица 2 соответственно) в лабораторном отчете.

Таблица 1.

Таблица 2.

4.1.2. По результатам измерений (п.4.1.1.) определить функциональное назначение элементов и проставить их обозначение на схеме в лабораторном отчете.

Внимание! Вноситьт обозначения в текст методических указаний категорически запрещается.

4.2. Исследование особенностей функционирования элемента ДД5, определение его функционального гназначения и измерение уровней напряжения, соответсствующих логическим сигналам “0” и “1”.

4.2.1. Задавая с помощью кнопки SA12 лоргические сигналы “0” и “1”, на входе элемента ДД5 по соотношению выходных сигналов определить его функциональное назначение (см.п.3.1.). Провести измерения величины напряжения на выходе элемента для каждой комбинации входных сигналов с помощью мультиметра (п.3.4.). Данные измерений занести в таблицу.

Таблица 3.

4.2.2. По результатам измерений (п.4.2.1.) определить уровни напряжений логического нуля U 0 и логической единицы U 1 для данного типа микросхем и установить их соответствие паспортным данным.

4.3. Провести полную минимизацию ФАЛ, представленной в п.2.7. По результатам минимизации составить функциональную схему устройства.

1. Название и цель работы

2. Схема исследуемого устройства

3. Таблицы 1,2,3

4. Результаты измерений U 0 и U 1 (п.4.2.2.)

5. Формулы для расчета и расчет по п.4.3., схема устройства

6. Выводы по работе

6. Контрольные вопросы

1. Какими значениями переменных оперирует алгебра логики?

2. Основные формы задания ФАЛ

3. Вид основных логических функций в алгебраической форме

4. Что такое “логический элемент”?

5. Какие логические функции выполняют элементы Пирса и Шеффера?

6. Чем определяется число возможных комбинаций входных переменных для произвольного логического элемента?

7. Список использованной литературы

Электротехника и основы электроники. О.А.Антонова, О.П.Глудкин и др., Под ред. проф. О.П.Глудкина.-М.:Высшая школа, 1993.

Электрическая схема, предназначенная для выполнения какой-либо логической операции с входными данными, называется логическим элементом. Входные данные представляются здесь в виде напряжений различных уровней, и результат логической операции на выходе - также получается в виде напряжения определенного уровня.

Операнды в данном случае подаются - на вход логического элемента поступают сигналы в форме напряжения высокого или низкого уровня, которые и служат по сути входными данными. Так, напряжение высокого уровня - это логическая единица 1 - обозначает истинное значение операнда, а напряжение низкого уровня 0 - значение ложное. 1 - ИСТИНА, 0 - ЛОЖЬ.

Логический элемент - элемент, осуществляющий определенные логические зависимость между входными и выходными сигналами. Логические элементы обычно используются для построения логических схем вычислительных машин, дискретных схем автоматического контроля и управления. Для всех видов логических элементов, независимо от их физической природы, характерны дискретные значения входных и выходных сигналов.

Логические элементы имеют один или несколько входов и один или два (обычно инверсных друг другу) выхода. Значения «нулей» и «единиц» выходных сигналов логических элементов определяются логической функцией, которую выполняет элемент, и значениями «нулей» и «единиц» входных сигналов, играющих роль независимых переменных. Существуют элементарные логические функции, из которых можно составить любую сложную логическую функцию.

В зависимости от устройства схемы элемента, от ее электрических параметров, логические уровни (высокие и низкие уровни напряжения) входа и выхода имеют одинаковые значения для высокого и низкого (истинного и ложного) состояний.

Традиционно логические элементы выпускаются в виде специальных радиодеталей - интегральных микросхем. Логические операции, такие как конъюнкция, дизъюнкция, отрицание и сложение по модулю (И, ИЛИ, НЕ, исключающее ИЛИ) - являются основными операциями, выполняемыми на логических элементах основных типов. Далее рассмотрим каждый из этих типов логических элементов более внимательно.

Логический элемент «И» - конъюнкция, логическое умножение, AND


«И» - логический элемент, выполняющий над входными данными операцию конъюнкции или логического умножения. Данный элемент может иметь от 2 до 8 (наиболее распространены в производстве элементы «И» с 2, 3, 4 и 8 входами) входов и один выход.

Условные обозначения логических элементов «И» с разным количеством входов приведены на рисунке. В тексте логический элемент «И» с тем или иным числом входов обозначается как «2И», «4И» и т. д. - элемент «И» с двумя входами, с четырьмя входами и т. д.


Таблица истинности для элемента 2И показывает, что на выходе элемента будет логическая единица лишь в том случае, если логические единицы будут одновременно на первом входе И на втором входе. В остальных трех возможных случаях на выходе будет ноль.

На западных схемах значок элемента «И» имеет прямую черту на входе и закругление на выходе. На отечественных схемах - прямоугольник с символом «&».

Логический элемент «ИЛИ» - дизъюнкция, логическое сложение, OR


«ИЛИ» - логический элемент, выполняющий над входными данными операцию дизъюнкции или логического сложения. Он так же как и элемент «И» выпускается с двумя, тремя, четырьмя и т. д. входами и с одним выходом. Условные обозначения логических элементов «ИЛИ» с различным количеством входов показаны на рисунке. Обозначаются данные элементы так: 2ИЛИ, 3ИЛИ, 4ИЛИ и т. д.


Таблица истинности для элемента «2ИЛИ» показывает, что для появления на выходе логической единицы, достаточно чтобы логическая единица была на первом входе ИЛИ на втором входе. Если логические единицы будут сразу на двух входах, на выходе также будет единица.

На западных схемах значок элемента «ИЛИ» имеет закругление на входе и закругление с заострением на выходе. На отечественных схемах - прямоугольник с символом «1».

Логический элемент «НЕ» - отрицание, инвертор, NOT

«НЕ» - логический элемент, выполняющий над входными данными операцию логического отрицания. Данный элемент, имеющий один выход и только один вход, называют еще инвертором, поскольку он на самом деле инвертирует (обращает) входной сигнал. На рисунке приведено условное обозначение логического элемента «НЕ».

Таблица истинности для инвертора показывает, что высокий потенциал на входе даёт низкий потенциал на выходе и наоборот.

На западных схемах значок элемента «НЕ» имеет форму треугольника с кружочком на выходе. На отечественных схемах - прямоугольник с символом «1», с кружком на выходе.

Логический элемент «И-НЕ» - конъюнкция (логическое умножение) с отрицанием, NAND

«И-НЕ» - логический элемент, выполняющий над входными данными операцию логического сложения, и затем операцию логического отрицания, результат подается на выход. Другими словами, это в принципе элемент «И», дополненный элементом «НЕ». На рисунке приведено условное обозначение логического элемента «2И-НЕ».


Таблица истинности для элемента «И-НЕ» противоположна таблице для элемента «И». Вместо трех нулей и единицы - три единицы и ноль. Элемент «И-НЕ» называют еще «элемент Шеффера» в честь математика Генри Мориса Шеффера, впервые отметившего значимость этой в 1913 году. Обозначается как «И», только с кружочком на выходе.

Логический элемент «ИЛИ-НЕ» - дизъюнкция (логическое сложение) с отрицанием, NOR

«ИЛИ-НЕ» - логический элемент, выполняющий над входными данными операцию логического сложения, и затем операцию логического отрицания, результат подается на выход. Иначе говоря, это элемент «ИЛИ», дополненный элементом «НЕ» - инвертором. На рисунке приведено условное обозначение логического элемента «2ИЛИ-НЕ».


Таблица истинности для элемента «ИЛИ-НЕ» противоположна таблице для элемента «ИЛИ». Высокий потенциал на выходе получается лишь в одном случае - на оба входа подаются одновременно низкие потенциалы. Обозначается как «ИЛИ», только с кружочком на выходе, обозначающим инверсию.

Логический элемент «исключающее ИЛИ» - сложение по модулю 2, XOR

«исключающее ИЛИ» - логический элемент, выполняющий над входными данными операцию логического сложения по модулю 2, имеет два входа и один выход. Часто данные элементы применяют в схемах контроля. На рисунке приведено условное обозначение данного элемента.

Изображение в западных схемах - как у «ИЛИ» с дополнительной изогнутой полоской на стороне входа, в отечественной - как «ИЛИ», только вместо «1» будет написано «=1».


Этот логический элемент еще называют «неравнозначность». Высокий уровень напряжения будет на выходе лишь тогда, когда сигналы на входе не равны (на одном единица, на другом ноль или на одном ноль, а на другом единица) если даже на входе будут одновременно две единицы, на выходе будет ноль - в этом отличие от «ИЛИ». Данные элементы логики широко применяются в сумматорах.

Транзистор - это компонент из полупроводникового материала, который позволяет управлять достаточно большим электрическим током в цепи за счет изменения тока более малой величины на управляющем электроде.

Существуют биполярные и полевые транзисторы. Различаются они тем, что в биполярном транзисторе перенос зарядов осуществляется как основными, так и неосновными носителями зарядов - дырками и электронами. В полевых транзисторах перенос зарядов осуществляется только одним типом носителей.

Синтез и исследование элементов на транзисторно-транзисторной логике (ТТЛ). Схемы ТТЛ базируются на биполярных транзисторах npn-структуры. Биполярные транзисторы имеют такое название от того, что перенос зарядов в них осуществляется двумя типами носителей - электронами и дырками. Базовым элементом данной технологии является схема И-НЕ. Логическое умножение осуществляется за счет свойств многоэмиттерного транзистора.

Элемент ИЛИ-НЕ.

Реализация логического элемента ИЛИ-НЕ на биполярных транзисторах представлена на рисунке 1.1.

Логическую функцию ИЛИ-НЕ можно выразить функции И и НЕ с помощью правил де Моргана: отрицание дизъюнкции есть конъюнкция отрицаний. На схема имеется два инвертора VT1 и VT2 на которые подаются с помощью ключей и напряжения противоположных полярностей. При подаче логического нуля на оба входа («земля») происходит разряжение в p-области транзистора, он становится закрытым, при этом ток начинает течь через транзисторы VT3, VT4, которые выполняют функцию И, уровень напряжения достаточен для обеспечения логической единицы. Если хотя бы на один вход будет подана логическая единица («плюс»), то произойдёт падение напряжение на одном из выходов инверторов, напряжения на выходе И не будет достаточно для обеспечения логической единицы.

Рисунок 1.1 - Логический элемент ИЛИ-НЕ на биполярных транзисторах


Рисунок 1.2 - на входы элемента ИЛИ-НЕ поданы логические нули

На рисунке 1.2 представлен вариант работы транзисторной схемы, когда на входы поданы логические нули, в результате на выходе будет значение логической единицы.

Элемент ИЛИ-НЕ рождает следующую таблицу истинности (см. таб. 1.1):

Таблица 1.1 - Таблица истинности элемента ИЛИ-НЕ

Элемент НЕ.

Элемент НЕ на ТТЛ представлен на рисунке 1.3.

Рисунок 1.3 - Логический инвертор (логическая функция НЕ)

При установке переключателя на сторону «плюса», течёт малый эмиттерный ток, этот ток позволяет открыть транзистор, происходит падение напряжения и индикатор не загорается, что соответствует логическому нулю. При установке ключа на сторону «земли», происходит расширение закупоривающего слоя, сопротивление транзистора становится много больше сопротивления резистора, транзистор закрыт, падения напряжения не происходит, что соответствует логической единице.

Таблица истинности элемента НЕ (см. таб. 1.2).

Таблица 1.2 - Таблица истинности элемента НЕ

При подаче логических единиц путём замыкания ключей и через транзисторы около этих ключей протекает достаточный ток и на входе в инвертирующий транзистор поступает достаточное напряжение для его открытия, ток свободно течёт, сопротивление инвертирующего транзистора невелико, напряжение падает на резисторе при инверторе, на выходе логический нуль.

При подаче на ключи или единицы или нуля, или обоих нулей, выходного напряжения в инвертор не достаточно для его открытия, его сопротивление велико и на его коллекторе образуется высокий уровень напряжения, на выходе логический нуль.

Схема элемента И-НЕ со сложным инвертором представлена на рисунке 1.5.


Рисунок 1.5 - Элемент И-НЕ со сложным инвертором

Таблица истинности для данного элемента соответствует таблице 1.3.

Данный элемент состоит из трёх каскадов: входной (R1, VT1,VT2 - модель многоэмиттерного транзистора), фазоинверсный (VT3, R2, R4) и выходной усилитель (VT4, VT5, VD3, R3).

При подаче на входы x 1 и x 2 логических единиц возникает коллекторный ток на транзисторах VT1,VT2 и втекает в базу транзистора VT3, открывая его. Часть тока эмиттера VT3 поступает в транзистор VT5, он открывается, на выходе y устанавливается низкий уровень напряжения, при этом VT4 закрыт (недостаточно напряжения через переход база-эмиттер VT4 и VD1). При подаче хотя бы одного логического нуля, коллекторный ток транзисторов VT1, VT2 прекращается, VT3 и VT5 закрываются, VT4 открывается. Так как VT5 закрыт на выходе образовывается высокий уровень напряжения.

Синтез и исследование элементов на МДП-транзисторах.

Развитие компьютерной схемотехники на основе МОП-транзисторов началось с появлением в 1962 г. полевого транзистора с индуцированным каналом. Схемы на МОП-транзисторах характеризуются относительной простотой изготовления, компактностью, малой потребляемой мощностью, высокой помехоустойчивостью к изменению напряжения питания. МОП-транзисторы имеют структуру: металл-диэлектрик-полупроводник и в общем случае называются МДП-транзисторами. Поскольку диэлектрик реализуется на основе оксида SiO 2 , то применяют название МОП-транзисторы (униполярные, канальные). Металлический электрод, на который поступает управляющее напряжение, называется затвором (З) а два других электрода -- истоком (И) и стоком (С). От истока к стоку протекает рабочий ток. Для р-канала полярность стока отрицательная, а для п-канала -- положительная. Основная пластина полупроводника называется подкладкой (П). Канал -- это приповерхностный проводящий слой между истоком и стоком, в котором величина тока определяется с помощью электрического поля.

Процессы инжекции и диффузии в канале отсутствуют. Рабочий ток в канале обусловлен дрейфом в электрическом поле электронов в n-каналах и дырок в р-каналах.

При нулевом значении управляющего напряжения канал отсутствует и ток не протекает. Канал, который образуется под действием внешнего управляющего напряжения, называется индуцированным. Напряжение, при котором образуется канал, называется пороговым. Канал с начальной дополнительной концентрацией зарядов называется встроенным. Быстродействие n-МОП транзисторов в 5-8 раз выше быстродействия р-МОП транзисторов, поскольку подвижность электронов существенно больше дырок. В МОП-схемах полностью исключены резисторы, их роль выполняют МОП-транзисторы.

Элемент ИЛИ-НЕ,.

Схема элемента ИЛИ-НЕ изображена на рисунке 1.6.


Рисунок 1.6 - Элемент ИЛИ-НЕ на МОП-транзисторах

Транзистор VT1 выполняет роль резистора так как МОП-транзисторы обладают высоким сопротивлением, для того, чтобы он пропускал ток, исток подключен к положительному полюсу источника. При одновременной подаче на транзисторы VT2 и VT3 логических нулей, происходит их закрытие, они создают нагрузку после транзистора VT1, уровень этого напряжения соответствует логической единице. Таблица истинности данного элемента соответствует таблице 1.1. Если на вход будет подана хотя бы одна или обе логических единиц, один из транзисторов VT2 и VT3 (или оба) откроются, произойдет спад напряжения, на выходе буде логический ноль.

Элемент И-НЕ.

Элемент И-НЕ представлен на рисунке 1.7.


Рисунок 1.7 - Элемент И-НЕ на МОП-транзисторах

Элемент ИЛИ.

Элемент И.

Синтез и исследование элементов на КМДП структурах.

Элемент ИЛИ-НЕ.

Элемент И-НЕ.

Синтез и исследование элементов на основе эмиттерно-связанной логики (ЭСЛ).

Схемотехника элементов ЭСЛ основана на использовании дифференциального усилителя в режиме переключения тока. Элементы ЭСЛ появились в 1967 г. и в настоящее время являются самыми быстродействующими среди полупроводниковых элементов на основе кремния. Задержки распространения сигналов в элементах ЭСЛ уменьшились до субнаносекундного диапазона (приблизительно 1 нс).

Сверхбыстродействие элементов ЭСЛ достигается за счет использования ненасыщенного режима работы транзисторов, выходных эмиттерных повторителей, малых амплитуд логических сигналов (около 0,8 В). В логических элементах ЭСЛ имеется парафазный выход, что позволяет одновременно получать прямое и инверсное значение реализуемой функции. Это дает заметное снижение общего количества микросхем в аппаратуре.

Особенностями схемотехники ЭСЛ и ее характеристик являются:

Возможность объединения выходов нескольких элементов для образования новых функций;

Возможность работы на низкоомную нагрузку благодаря наличию эмиттерных повторителей;

Небольшое значение работы переключения и независимость потребляемой мощности от частоты переключения;

Высокая стабильность динамических параметров при изменении температуры и напряжения питания;

Использование отрицательного источника питания и заземления коллекторных цепей, что уменьшает зависимость выходных сигналов от помех в шинах питания.

К недостаткам элементов ЭСЛ относят сложность схем, значительное потребление мощности и трудности согласования с микросхемами ТТЛ и ТТЛШ.

Элемент И.

Элемент ИЛИ.

Элемент И-НЕ.

Элемент ИЛИ-НЕ.

Синтез и исследование элемента НЕ на МДП-транзисторах () в положительной и отрицательной логике.

Транскрипт

1 16 Исследование логики работы логических элементов Цель работы Ц елью работы является закрепление знаний основ алгебры логики и получение навыков в исследовании логических элементов и соединении их в простейшие комбинационные схемы.

2 17 к 1. Сведения из теории омбинационные схемы состоят из логических элементов. Логическим элементом называется простейшая часть цифровой схемы, которая выполняет логические операции над логическими переменными. При использовании интегральных микросхем такими элементами обычно являются элементы типа И-НЕ, ИЛИ-НЕ, И-ИЛИ-НЕ. Работа логических элементов описывается таблицами истинности. На электрических функциональных схемах логические элементы отображаются в виде условных графических обозначений (УГО). Условные графические обозначения логических элементов на два входа приведены на рис 2.1а 2.1д. Таблицы истинности для этих элементов имеют вид, показанный в табл НЕ 2И 2ИЛИ 2И-НЕ 1 1 а) б) в) г) д) Рис Условные графические обозначения логических элементов Таблица 2.1 Таблица истинности логических элементов В х о д ы Т и п э л е м е н т а a b НЕ 2И 2ИЛИ 2И-НЕ 2ИЛИ-НЕ У = а У = аb У = a v b Y = ab Y = a v b Для записи логической функции в СДНФ (совершенная дизъюнктивная нормальная форма) по таблице истинности необходимо для каждой строки таблицы, в которой функция У принимает значение «1», записать логическое произведение (конъюнкцию) входных переменных (для табл. 2.1 имеются в виду переменные a и b). При этом если переменная в данной строке принимает значение «0», то в конъюнкции она записывается с инверсией. Далее при необходимости следует минимизировать полученную функцию.

3 18 2. Краткое описание лабораторной установки В качестве лабораторной установки используется стенд типа УМ-11. Основу стенда составляют блок питания, генераторы синхроимпульсов и одиночных импульсов, набор логических элементов и триггеров, а также элементы индикации и управления. Входы и выходы всех элементов выведены на переднюю панель стенда в виде контактных гнезд. На передней панели стенда имеются условные графические обозначения логических элементов и триггеров. С помощью специальных проводов с наконечниками можно соединять элементы друг с другом, подавать на входы элементов сигналы от генераторов или с переключателей, а также наблюдать значения сигналов с помощью индикаторных лампочек или с помощью осциллографа. Фрагмент передней панели стенда показан на рис Рис Фрагмент панели стенда УМ-11 Кроме элементов на 2, 3 и 4 входа, показанных на рис. 2.2, на передней панели имеется также элемент И-НЕ на 8 входов. Такой набор элементов соответствует серии 155 интегральных микросхем. Таким образом, с помощью стенда можно собирать комбинационные схемы и проверять правильность их работы.

4 19 3. Порядок выполнения работы Задание 1. Исследовать логику работы элемента 2И-НЕ. Для этого собрать на стенде схему, приведенную на рис При построении схемы использовать переключатели, с помощью которых на вход элемента можно подавать сигналы «0» и «1». сигналы на выходе наблюдать по состоянию индикаторной лампочки. При сборке схемы следует обратить внимание на то, что каждый переключатель может задавать значение одной переменной. При этом переключатель имеет два выхода: прямой (верхний) и инверсный (нижний). Так что с верхнего выхода переключателя можно получить прямое значение переменной, а с нижнего инверсное значение (рис. 2.3). Само прямое значение переменной зависит от положения переключателя: в верхнем положении переключателя переменная равна «1», в нижнем «0». Соответственно инверсное значение будет обратным. С помощью переключателей подать на вход схемы все комбинации сигналов «а» и «b»,» и занести полученные значения выходных сигналов в таблицу истинности. Сравнить полученную таблицу с данными табл. 2.1.для элемента 2И-НЕ. В отчет занести: собранную схему, УГО элемента 2И-НЕ и полученную таблицу истинности. +5V a 1 a b Y 1 b Рис Схема для исследования элемента 2И-НЕ Задание 2. Исследовать логику работы элемента 3И-НЕ. Для этого собрать схему, аналогичную схеме рис Проверить логику работы схемы при различных значениях входных сигналов и составить таблицу истинности. Задание 3. Исследовать логику работы элемента НЕ, реализованного на основе элемента 2И-НЕ. Для этого собрать схему, приведенную на рис. 2.4,. и дополнить ее переключателем и индикаторной лампочкой. Рис Реализация схемы НЕ на элементах 2И-НЕ

5 20 Проверить логику работы схемы при различных значениях входного сигнала и сравнить ее с данными табл. 2.1 для элемента НЕ. Задание 4. Собрать схему, приведенную на рис. 2.5, и исследовать логику ее работы. Составить таблицу истинности и сравнить ее с данными табл. 2.1 для элемента 2И. Рис Схема реализации схемы И на элементах И-НЕ Задание 5. Собрать схему, приведенную на рис.2.6, и исследовать логику ее работы. Составить таблицу истинности и сравнить ее с данными табл. 2.1 для элемента 2ИЛИ. Рис Схема реализации схемы ИЛИ на элементах И-НЕ Задание 6. Собрать схему, приведенную на рис. 2.7, и исследовать логику ее работы. Составить таблицу истинности и сравнить ее с таблицей истинности для элемента 2И-2ИЛИ. Рис Пример схемы на элементах И-НЕ 4. Содержание отчета 1. Тема, цель работы, 2. Результаты выполнения заданий. По каждому заданию привести схему эксперимента, УГО исследуемого элемента и таблицу истинности. 3. Анализ полученных результатов. 4. Выводы по работе.

6 21 5. Контрольные вопросы 1. Что такое логическая функция? 2. Что такое логический элемент? 3. Поясните логику работы элемента НЕ. 4. Поясните логику работы элемента И. 5. Поясните логику работы элемента ИЛИ. 6. Поясните логику работы элемента И-НЕ. 7. Поясните логику работы элемента ИЛИ-НЕ. 8. Что такое таблица истинности? 9. Как по таблице истинности записать логическую функцию в СДНФ? 10. Как из элементов И-НЕ построить схему НЕ? 11. Как из элементов И-НЕ построить схему И? 12. Как из элементов И-НЕ построить схему ИЛИ? 13. Какую функцию реализует схема, приведенная на рис. 2.7.


23 1. Общие сведения о комбинационных схемах Комбинационные схемы состоят из логических элементов. При использовании интегральных микросхем такими элементами обычно являются элементы типа И-НЕ, ИЛИ-НЕ,

Лабораторная работа 8 Моделирование простейших логических схем Цель работы моделирование логических функций при помощи логических элементов. Рабочее задание Домашнее задание. В соответствии с заданным

Назначение программы 34 1. Краткое описание программы Программа Electronics Workbench предназначена для моделирования электронных схем (аналоговых и цифровых) и позволяет изображать схемы на экране и моделировать

Министерство образования и науки Российской Федерации Уральский федеральный университет имени первого Президента России Б. Н. Ельцина ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ НА ИНТЕГРАЛЬНЫХ МИКРОСХЕМАХ Методические указания

Лабораторная работа 10 Моделирование триггеров и регистров Цель работы приобретение практических навыков построения и исследования различных типов триггеров и регистров. Рабочее задание 1 Домашнее задание

Работа 8. Исследование мультиплексоров Цель работы: изучение принципов построения, практического применения и экспериментального исследования мультиплексоров Продолжительность работы 4 часа. Самостоятельная

Практическая работа 1 Анализ и синтез логических и релейных систем управления ВВЕДЕНИЕ Устройства дискретного действия, выполненные на элементах гидро-, пневмо- и электроавтоматики, и управляющие микропроцессоры

Министерство образования и науки и РФ Федеральное автономное образовательное учреждение высшего образования ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ Институт нанотехнологий, электроники и приборостроения ЭЛЕКТРОННЫЙ

Название теста: Схемотехника Предназначено для студентов специальности: спец._ис_(2 курс_3_ г.о.) Отделение рус. ОЧНОЕ Текст вопроса 1 Дайте определение понятию символ 2 Дайте определение понятию код

Работа ИССЛЕДОВАНИЕ ДЕШИФРАТОРОВ Цель работы: изучение принципов построения и методов синтеза дешифраторов; макетирование и экспериментальное исследование дешифраторов В процессе самостоятельной подготовки

Работа 1 Исследование работы логических элементов 1. Цель работы Целью работы является исследование принципа действия цифровых логических элементов (ЛЭ). 2. Методические указания 2.1. ЛЭ и операция логического

Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Высшая школа экономики" Факультет: Московский институт электроники и математики

Казанский государственный технический университет им. А.Н. Туполева Кафедра радиоэлектронных и телекоммуникационных систем Щербакова Т.Ф., Култынов Ю.И. Комбинационные и последовательные узлы цифровых

Работа. СИНХРОННЫЕ ДВУХСТУПЕНЧАТЫЕ ТРИГГЕРЫ Цель работы изучение принципов построения и схем, статических и динамических режимов работы синхронных двухступенчатых триггеров. Продолжительность работы часа..структура

Лекция 5 Синтез комбинационных схем на дешифраторах Определение и классификация Дешифратором называют комбинационное устройство, которое в общем случае преобразует один тип двоичного кода в другой. Наиболее

ЛАБОРАТОРНАЯ РАБОТА 4 «Исследование работы Шифраторов и Дешифраторов» 1 Цель работы: 1.1 Ознакомление с основными характеристиками интегральных преобразователей кодов: дешифраторов, шифратораторов. 2 Литература:

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ЭНЕРГЕТИЧЕСКИЙ ИНСТИТУТ (ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ) А.Т. КОБЯК ТРИГГЕРЫ Методическое пособие к лабораторной работе МОСКВА 2004 ТРИГГЕРЫ Триггером

Методическое пособие для учащихся по информатике Тема 1. Формы представления логических функций (совершенные дизъюнктивные и конъюнктивные нормальные формы) Приложение 2.19.5 Если логическая функция представлена

222 Лабораторная работа 13 Синтез и моделирование работы преобразователя кода 1. Цель работы Освоить порядок синтеза и моделирования преобразователя кода с помощью программы Multisim 11.0.2. 2. Общие сведения

Лабораторная работа 1 Цифровая логика компьютера. 1. Цель работы Целью работы является изучение логических элементов компьютера и их таблиц истинности, а также построение триггеров в программе Logisim.

Исследование логической микросхемы КЛА7 Цель работы изучить устройство и принцип действия логической микросхемы КЛА7. Общие сведения Интегральная схема КЛА7 содержит элемента И-НЕ, построенных на КМОП-структурах.

«ЛОГИКА-М» Учебно-лабораторный стенд Техническое описание и инструкция по эксплуатации Содержание стр. 1. Назначение... 2 2. Технические характеристики... 2 3. Конструкция стенда... 3 4. Лабораторная работа

ЗАДАНИЯ И МЕТОДИЧЕСКИЕ УКАЗАНИЯ по выполнению контрольной работы по дисциплине «Элементы систем автоматики» студентами заочного факультета Направление подготовки 000-Электроэнергетика и электротехника

Решение задач с использованием конъюнктивной нормальной и дизъюнктивной нормальной форм Лапшева Елена Евгеньевна, ПРЦНИТ СГУ, МОУ «Физико-технический лицей г Саратова» 6 февраля 2007 г В задачниках по

Министерство образования и науки Российской Федерации Федеральное агентство по образованию Саратовский Государственный Технический Университет ИССЛЕДОВАНИЕ РЕГИСТРОВ Методические указания к выполнению

3. Элементы схемотехники. Логические схемы Цели: - познакомиться с элементами и принципами построения логических схем; - закрепить понимание основных законов алгебры логики; - учиться упрощать логические

Контрольно-оценочные средства для проведения текущего контроля по МДК.01.01 Цифровая схемотехника (2 курс, семестр 2018-2019 уч. г.) Текущий контроль 1 Форма контроля: Практическая работа (Опрос) Описательная

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Р.Е.

ЛАБОРАТОРНАЯ РАБОТА 1 СИНТЕЗ КОМБИНАЦИОННЫХ УСТРОЙСТВ ПО ЗАДАННОЙ ЛОГИЧЕСКОЙ ФУНКЦИИ Цель работы: 1. Изучение способов синтеза комбинационных устройств по заданной логической функции. 2. Построение комбинационных

Лабораторная работа 9 Моделирование комбинационных устройств Цель работы изучение форм представления чисел в цифровых устройствах и исследование схем комбинационных цифровых устройств дешифраторов, мультиплексоров

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ Методические указания

Логические модели переключательных схем Обработка б информации Физический принцип обработки информации подлежащая преобразованию информация кодируется последовательностью импульсов, обработка которых происходит

Работа. Синхронные одноступенчатые триггеры со статическим и динамическим управлением записью Цель работы изучить схемы асинхронного -триггера, который является запоминающей ячейкой всех типов триггеров,

Лабораторная работа 11 Моделирование счетчиков импульсов Цель работы изучение структуры и исследование работы суммирующих и вычитающих двоичных счетчиков, а также счетчиков с коэффициентом пересчета, отличным

Лабораторная работа 2. Триггеры Цель: Изучение назначения и принцип работы устройств триггера. Знакомство с базовыми устройствами триггер из библиотеки EWB. Оборудование: Электронная лаборатория Electronics

ЭЛЕМЕНТЫ СИСТЕМ АВТОМАТИКИ Тема 2 Логические схемы и их минимизация И.В. Музылёва 23 Основные понятия алгебры логики http://cifra.studentmiv.ru Логические схемы Составление таблиц истинности для логических

4. ЛАБОРАТОРНАЯ РАБОТА 3 RS И D-ТРИГГЕРА Цель занятия: построение и ознакомление с работой основных схем RS и D триггеров с помощью инструментальных средств цифровой части пакета EWB, закрепления теоретического

1. ЦЕЛЬ РАБОТЫ 1.1. Изучить функциональные и электрические характеристики АЛУ на ИМС К155 ИП3. 1.2. Получить практические навыки по исследованию работы ИМС АЛУ, путем подачи входных воздействий, наблюдения

1. ЦЕЛЬ РАБОТЫ 1.1. Изучить функциональные и электрические характеристики дешифраторов на ИМС К 155 ИД4; К 155 ИД7; 1.2. Получить практические навыки по исследованию работы ИМС дешифраторов путем подачи

Тема 4. Логические основы ЭВМ 1.ОСНОВНЫЕ СВЕДЕНИЯ ИЗ АЛГЕБРЫ ЛОГИКИ... 1 2. ЗАКОНЫ АЛГЕБРЫ ЛОГИКИ... 4 3. ПОНЯТИЕ О МИНИМИЗАЦИИ ЛОГИЧЕСКИХ ФУНКЦИЙ... 6 4.ТЕХНИЧЕСКАЯ ИНТЕРПРЕТАЦИЯ ЛОГИЧЕСКИХ ФУНКЦИЙ...

Направление 09.03.03 Информатика 1.2 Лекция «Логические основы информатики» Лектор Молнина Елена Владимировна Старший преподаватель кафедры Информационных систем, ауд.9, гл.корпус. mail: [email protected]

ЛАБОРАТОРНАЯ РАБОТА ИЗУЧЕНИЕ ЭЛЕКТРИЧЕСКИХ ПРОЦЕССОВ В ПРОСТЫХ ЛИНЕЙНЫХ ЦЕПЯХ Цель работы: исследование коэффициента передачи и сдвига фаз между силой тока и напряжением в цепях, состоящих из последовательно

Контрольное задание В зависимости от выданного варианта Вам необходимо построить КЛС дешифратора, шифратора, мультиплексора или сумматора. Вариант 7 в десятичное: «7» 7 «7» 7 0 0 0 0 0 0 0 5 0 0 0 0 0

Поправку и у вас есть все шансы научиться разбираться в людях. В результате проведенного исследования было выявлено, что большая часть студентов использует язык жестов и частично понимает значение телодвижений.

3 Лекция 3. КОМБИНАЦИОННЫЕ ЦИФРОВЫЕ УСТРОЙСТВА План. Шифраторы, дешифраторы и преобразователи кодов.. Мультиплексоры и демультиплексоры. 3. Сумматоры.. Выводы.. Шифраторы, дешифраторы и преобразователи

Электроника и МПТ Синтез логических схем по заданной функции Представление логических функций (ЛФ) 3 способа представления логических функций:. графиком (в виде временной диаграммы напряжения); 2. аналитическим

ИССЛЕДОВАНИЕ ЭЛЕМЕНТАРНЫХ ЛОГИЧЕСКИХ ЭЛЕМЕНТОВ Методические указания Ульяновск 2006 1 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования

Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Казанский (Приволжский) федеральный университет»

ЛАБОРАТОРНАЯ РАБОТА «ОСНОВЫ ЦИФРОВОЙ ТЕХНИКИ» Рис. 1. Общий вид лабораторного стенда 1 Работа 1 ИССЛЕДОВАНИЕ ГЕНЕРАТОРОВ ПРЯМОУГОЛЬНЫХ ИМПУЛЬСОВ 1. Цель работы Ознакомление с основными функциями и тестирование

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНА МЕТАЛУРГІЙНА АКАДЕМІЯ УКРАЇНИ МЕТОДИЧНІ ВКАЗІВКИ до виконання лабораторних робіт та практичних занять з дисципліни «АРХІТЕКТУРА КОМП ЮТЕРІВ» для студентів

МИНИСТЕРСТВО ТРАНСПОРТА РФ ГОСУДАРСТВЕННАЯ СЛУЖБА ГРАЖДАНСКОЙ АВИАЦИИ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ Кафедра вычислительных машин, комплексов, систем и сетей Курсовая

{ основные понятия - составление сложных выражений - таблицы истинности - законы логики высказываний - примеры } Исходным понятием логики высказываний является простое или элементарное высказывание. Это

Лабораторная работа 3 Схемы на D-триггерах Кафедра ВС СибГУТИ 2012 год Содержание 1. Цели работы:... 3 2. Триггер в счётном режиме... 3 3. Делитель... 3 4. Описание микросхем К176ТМ1 и К176ТМ2... 4 5.

АРХИТЕКТУРА ЭВМ И ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМ Лекция 3. Логические основы ЭВМ, элементы и узлы. Преподаватель Цвелой Владимир Андреевич ЦЕЛЬ: ИЗУЧИТЬ ОСНОВНЫЕ ОПЕРАЦИИ АЛГЕБРЫ ЛОГИКИ, ОСНОВЫ ПОСТРОЕНИЯ КОМБИНАЦИОННЫХ

Глава 3 ЛОГИКА И ЛОГИЧЕСКИЕ ОСНОВЫ КОМПЬЮТЕРА 3.1. Алгебра логики Первые учения о формах и способах рассуждений возникли в странах Древнего Востока (Китай, Индия), но в основе современной логики лежат

1 Простейшие преобразователи информации Математическая логика с развитием вычислительных машин оказалась в тесной взаимосвязи с вычислительной математикой, со всеми вопросами конструирования и программирования

1. ЦЕЛЬ РАБОТЫ 1.1. Изучить функциональные и электрические характеристики полупроводниковых ПЗУ на ИМС К155ПР6, К155ПР7. 1.2. Получить практические навыки по исследованию работы ИМС ПЗУ К155ПР6, К155ПР7

Содержание Предисловие 14 Глава 1. Цифровые системы и представление информации 19 1.1. Цифровые системы 19 1.1.1. Управляющие системы 20 Логические сигналы и функции 21 Положительная и отрицательная логика

Министерство образования и науки РФ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Нижегородский государственный технический университет им. Р.Е.

А.И.Недашковский Лабораторная работа Асинхронные и синхронные счетчики импульсов Цель работы знание структур построения, параметров и режимов работы счетчиков импульсов, умение анализировать их работу,

Министерство образования Российской Федерации ОРЕНБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Кафедра приборостроения Е. А. Корнев МЕТОДИЧЕСКИЕ УКАЗАНИЯ к лабораторным работам по дисциплинам «Вычислительная техника»,

Открытый урок «Построение логических схем. Базовые логические элементы». Тип урока: комбинированный (проверка знаний учащихся, изучение нового материала). Класс: 10 А класс Дата проведения: 17.01.2009г.

Лабораторная работа 2. Исследование работы триггеров. Кафедра ВС СибГУТИ 2012 год Содержание 1. Цель работы:... 3 2. Общие сведения... 3 3. Асинхронный RS-триггер... 4 4. Синхронный одноступенчатый D-триггер....

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ Задание на работу Измерить вибрации при установке машины без амортизаторов и с амортизаторами. По результатам измерений определить эффективность виброизоляции машины. В усложненных

Цель работы : 1) изучение принципов построения серийных логических микросхем;

2) исследование логических функций одного и двух переменных и их реализация.

Общие сведения:

Логические элементы (ЛЭ) широко применяются в автоматике, вычислительной технике и цифровых измерительных приборах. Их создают на базе электронных устройств, работающих в ключевом режиме, при котором уровни сигналов могут принимать только два значения. В положительной логике принято, что высокий уровень сигнала соответствует логической единице (1), а низкий – логическому нулю (0).

Логическая функция выражает зависимость выходных логических переменных от входных и принимает значения 0 или 1. Любую логическую функцию удобно представить в виде таблицы состояний (таблицы истинности), где записываются возможные комбинации аргументов и соответствующие им функции.

Работу логических устройств анализируют с помощью алгебры логики (булевой алгебры), где переменная может принимать только два значения: 0 или 1.

Основными логическими операциями являются (табл.1):

1) логическое умножение: y =x 1 ·x 2 ·...·x n (читается “и х 1 , и х 2 ,..., и х n ”);

2) логическое сложение: y =x 1 +x 2 +...+x n (читается “или х 1 , или х 2 ,..., или х n ”);

3) логическое отрицание: (читается “не х ”).

Как видно из табл.1, выходной сигнал у элемента ИЛИ равен 1, если хотя бы один из его входов подан сигнал 1. Элемент И выдает 1, если на все входы поданы сигналы 1.

Все возможные логические функции n переменных можно образовать с помощью комбинации трех основных операций: И, ИЛИ, НЕ. Поэтому такой набор называют логическим базисом или функционально полным. Используя законы булевой алгебры (табл. 1), можно доказать, что таковыми являются наборы из одной функции И-НЕ, ИЛИ-НЕ.

В базовых элементах одной серии использована одинаковая микросхемная реализация. Серия характеризуется общими электрическими, конструктивными и технологическими параметрами.

Интегральные микросхемы серии 155 представляют собой транзисторно-транзисторные логические (ТТЛ) элементы с 14 или 16 выводами. Базовым элементом серии является логический элемент И-НЕ, состоящий из многоэмиттерного транзистора VT1 и сложного усилителя-инвертора.

Таблица 1

Тип Элемента Логическая функция (операция) Обозначение Логической Операции Таблица истинности Условное Изображение
x 1
x 2
Элемент НЕ (инвертор) Логическое Отрицание, Инверсия ùx x X 1 y
Элемент И (конъюнктор) Логическое умножение, Конъюнкция x 1 ·x 2 x 1 x 2 x 1 Ùx 2 x 1 &x 2 x 1 ·x 2 x 1 & y x 2 y=x 1 ×x 2
Элемент ИЛИ (дизъюнктор) Логическое сложение, Дизъюнкция x 1 +x 2 x 1 Úx 2 x 1 +x 2 x 1 1 y x 2 y=x 1 +x 2
Элемент И-НЕ (элемент Шеффера) Отрицание конъюнкции _____ x 1 ·x 2 _____ x 1 ·x 2 x 1 & y x 2 y=
Элемент ИЛИ-НЕ (элемент Пирса) Отрицание дизъюнкции _____ x 1 +x 2 _____ x 1 +x 2 x 1 1 y x 2 y=

В настоящее время применяется несколько разновидностей серий микросхем с элементами ТТЛ: стандартные (серии 133; К155), высокого быстродействия (серии 130; К131), микромощные (серия 134). Кроме расширения номенклатуры элементов серий К531 и К555 сейчас активно развиваются наиболее перспективные серии ТТЛШ - микромощная К1533 и быстродействующая К1531, выполненные на основе последних достижений технологии изготовления ИС - ионной имплантации и прецизионной фотолитографии.

В последние годы получили развитие программируемые логические элементы, на которых с помощью программаторов можно построить многие цифровые устройства.

Любая сложная логическая функция может быть реализована с помощью ЛЭ, выполняющих элементарные функции И-НЕ, ИЛИ-НЕ. Пусть требуется составить комбинационную схему с четырьмя входами x 1 , x 2 , x 3 , x 4 и одним выходом y . Высокий уровень напряжения должен появляться на выходе только при наличии высоких уровней на трех входах, т.е. y =1 при x 1 =x 2 =x 3 =1 и x 4 =0. Такую схему можно составить путем подбора элементов. Например, элемент 3И-НЕ при подаче на его входы x 1 =x 2 =x 3 =1 дает на выходе сигнал y 1 =0. Подавая его и x 4 =0 на вход элемента 2ИЛИ-НЕ, получаем y =1(рис.1).

Порядок выполнения эксперимента:

1) Установить блок логических элементов (ЛЭ).

2) Подключить источник питания ГН1 к гнёздам "5В".

3) Изучить принцип работы ЛЭ. Для этого подавать на их входы сигналы (0 или 1). Выходы контролировать при помощи логического тестера.

4) Собрать на ЛЭ комбинационные схемы (рис.2).



Проверить их работу. Составить таблицы истинности исследуемых схем.



1. Название работы.

2. Цель работы.

3. Схемы логических элементов.

4. Таблицы истинности.

5. Вывод по работе.

В выводе указать назначение логических элементов и область их применения.

Контрольные вопросы:

1. Какие операции алгебры логики Вы знаете?

2. Приведите примеры простейших цифровых устройств на основе логических элементов.

3. Поясните работу базовых логических элементов.

4. Как классифицируются ЛЭ по микросхемной реализации.

ИССЛЕДОВАНИЕ ТРИГГЕРОВ НА ЛОГИЧЕСКИХ ИМС .

Цель работы: изучение схем и функциональных возможностей основных типов триггеров; экспериментальное изучение триггеров и схем управления.